ﻻ يوجد ملخص باللغة العربية
We investigate black holes formed by static perfect fluid with $p=-rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.
We investigate the gravitational field of static perfect-fluid in the presence of electric field. We adopt the equation of state $p(r)=-rho(r)/3$ for the fluid in order to consider the closed ($S_3$) or the open ($H_3$) background spatial topology. D
We develop a new perturbation method to study the dynamics of massive tensor fields on extremal and near-extremal static black hole spacetimes in arbitrary dimensions. On such backgrounds, one can classify the components of massive tensor fields into
We discuss a new perturbation method to study the dynamics of massive vector fields on (near-)extremal static black hole spacetimes. We start with, as our background, a rather generic class of warped product metrics, and classify the field variables
Conformal invariance can ameliorate or eliminate the singularities residing in the black holes, and may still exist in the strong gravity regimes close to these black holes. In this paper, we try to probe this conformal invariance by looking into t
We study a spherically symmetric spacetime made of anisotropic fluid of which radial equation of state is given by $p_1 = -rho$. This provides analytic solutions and a good opportunity to study the static configuration of black hole plus matter. For