ترغب بنشر مسار تعليمي؟ اضغط هنا

Static-Fluid Black Holes

140   0   0.0 ( 0 )
 نشر من قبل Inyong Cho
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate black holes formed by static perfect fluid with $p=-rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.



قيم البحث

اقرأ أيضاً

199 - Inyong Cho 2017
We investigate the gravitational field of static perfect-fluid in the presence of electric field. We adopt the equation of state $p(r)=-rho(r)/3$ for the fluid in order to consider the closed ($S_3$) or the open ($H_3$) background spatial topology. D epending on the scales of the mass, spatial-curvature and charge parameters ($K$, $R_0$, $Q$), there are several types of solutions in $S_3$ and $H_3$ classes. Out of them, the most interesting solution is the Reisner-Norstrom type of black hole. Due to the electric field, there are two horizons in the geometry. There exists a curvature singularity inside the inner horizon as usual. In addition, there exists a naked singularity at the antipodal point in $S_3$ outside the outer horizon due to the fluid. Both of the singularities can be accessed only by radial null rays.
We develop a new perturbation method to study the dynamics of massive tensor fields on extremal and near-extremal static black hole spacetimes in arbitrary dimensions. On such backgrounds, one can classify the components of massive tensor fields into the tensor, vector, and scalar-type components. For the tensor-type components, which arise only in higher dimensions, the massive tensor field equation reduces to a single master equation, whereas the vector and scalar-type components remain coupled. We consider the near-horizon expansion of both the geometry and the field variables with respect to the near-horizon scaling parameter. By doing so, we reduce, at each order of the expansion, the equations of motion for the vector and scalar-type components to a set of five mutually decoupled wave equations with source terms consisting only of the lower-order variables. Thus, together with the tensor-type master equation, we obtain the set of mutually decoupled equations at each order of the expansion that govern all dynamical degrees of freedom of the massive tensor field on the extremal and near-extremal static black hole background.
We discuss a new perturbation method to study the dynamics of massive vector fields on (near-)extremal static black hole spacetimes. We start with, as our background, a rather generic class of warped product metrics, and classify the field variables into the vector(axial)- and scalar(polar)-type components. On this generic background, we show that for the vector-type components, the Proca equation reduces to a single master equation, whereas the scalar-type components remain to be coupled. Then, focusing on the case of (near-)extremal static black holes in four-dimensions, we consider the near-horizon expansion of both the background geometry and massive vector field by a scaling parameter $lambda$ with the leading-order geometry being the so called near-horizon geometry. We show that on the near-horizon geometry, thanks to its enhanced symmetry, the Proca equation for the scalar-type components also reduces to a set of two mutually decoupled homogeneous wave equations for two variables, plus a coupled equation through which the remaining variable is determined. Therefore, together with the vector-type master equation, we obtain the set of three decoupled master wave equations, which govern the three independent dynamical degrees of freedom of the massive vector field in four-dimensions. We further expand the geometry and massive vector field with respect to $lambda$ and show that at each order, the Proca equation for the scalar-type components can reduce to a set of decoupled inhomogeneous wave equations whose source terms consist only of the lower-order variables, plus one coupled equation that determins the remaining variable. Therefore, if one solves the master equations on the leading-order near-horizon geometry, then in principle one can successively solve the Proca equation at any order.
Conformal invariance can ameliorate or eliminate the singularities residing in the black holes, and may still exist in the strong gravity regimes close to these black holes. In this paper, we try to probe this conformal invariance by looking into t he wave absorption and scattering by the nonsingular static spherical black holes. The partial and total absorption cross section, as well as the differential scattering cross section, are presented for black holes with different choices of conformal parameters. Although the photon trajectories are unchanged from the Schwarzschild case since the spacetimes are conformally related, the wave optics are affected by the conformal parameters. As a result, the absorption of waves generally increases with the conformal parameters, while the shadow of the black holes remains the same as the Schwarzschild case. Moreover, the peaks in the oscillatory pattern of scattering shift towards smaller observing angles as the conformal parameters grows, while the widths of the glory peaks do not show sensitive dependence. The unique signature of the wave absorption and scattering by the nonsingular static spherical black holes in conformal gravity thus can serve to distinguish themselves from the Schwarzschild in the low frequency regime, and from other spherical black holes of alternative gravities in the high frequency limit and glory peaks.
We study a spherically symmetric spacetime made of anisotropic fluid of which radial equation of state is given by $p_1 = -rho$. This provides analytic solutions and a good opportunity to study the static configuration of black hole plus matter. For a given equation-of-state parameter $w_2 = p_2/rho$ for angular directions, we find exact solutions of the Einsteins equation described by two parameters. We classify the solution into six types based on the behavior of the metric function. Depending on the parameters, the solution can have event and cosmological horizons. Out of these, one type corresponds to a generalization of the Reissiner-Nordstrom black hole, for which the thermodynamic properties are obtained in simple forms. The solutions are stable under radial perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا