ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Families of Harish-Chandra Pairs

101   0   0.0 ( 0 )
 نشر من قبل Eyal M. Subag
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mathematical physicists have studied degenerations of Lie groups and their representations, which they call contractions. In this paper we study these contractions, and also other families, within the framework of algebraic families of Harish-Chandra modules. We construct a family that incorporates both a real reductive group and its compact form, separate parts of which have been studied individually as contractions. We give a complete classification of generically irreducible families of Harish-Chandra modules in the case of the family associated to SL(2, R).



قيم البحث

اقرأ أيضاً

224 - Dong Liu , Cuipo Jiang 2008
In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
In this paper we discuss the highest weight $frak k_r$-finite representations of the pair $(frak g_r,frak k_r)$ consisting of $frak g_r$, a real form of a complex basic Lie superalgebra of classical type $frak g$ (${frak g} eq A(n,n)$), and the maxim al compact subalgebra $frak k_r$ of $frak g_{r,0}$, together with their geometric global realizations. These representations occur, as in the ordinary setting, in the superspaces of sections of holomorphic super vector bundles on the associated Hermitian superspaces $G_r/K_r$.
112 - Nolan R. Wallach 2019
The first main result is that the Casselman-Wallach Globalization of a real analytic family of Harish-Chandra modules is continuous in the parameter. Our proof of this result uses results from the thesis of Vincent van der Noort in several critical w ays. In his thesis the holomorphic version of the result was proved in the case when the parameter space is a one dimensional complex manifold up to a branched covering. The second main result is a proof of the meromorphic continuation of $C^{infty}$ Eisenstein series.using Langlands results in the $K$ finite case as an application of the methods in the proof of the first part.
We construct a new class of algebras resembling enveloping algebras and generalizing orthogonal Gelfand-Zeitlin algebras and rational Galois algebras studied by [EMV,FuZ,RZ,Har]. The algebras are defined via a geometric realization in terms of sheave s of functions invariant under an action of a finite group. A natural class of modules over these algebra can be constructed via a similar geometric realization. In the special case of a local reflection group, these modules are shown to have an explicit basis, generalizing similar results for orthogonal Gelfand-Zeitlin algebras from [EMV] and for rational Galois algebras from [FuZ]. We also construct a family of canonical simple Harish-Chandra modules and give sufficient conditions for simplicity of some modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا