ﻻ يوجد ملخص باللغة العربية
We show that CSP is fixed-parameter tractable when parameterized by the treewidth of a backdoor into any tractable CSP problem over a finite constraint language. This result combines the two prominent approaches for achieving tractability for CSP: (i) by structural restrictions on the interaction between the variables and the constraints and (ii) by language restrictions on the relations that can be used inside the constraints. Apart from defining the notion of backdoor-treewidth and showing how backdoors of small treewidth can be used to efficiently solve CSP, our main technical contribution is a fixed-parameter algorithm that finds a backdoor of small treewidth.
We extend the notion of a strong backdoor from the CSP setting to the Valued CSP setting (VCSP, for short). This provides a means for augmenting a class of tractable VCSP instances to instances that are outside the class but of small distance to the
In this paper we provide an extended formulation for the class of constraint satisfaction problems and prove that its size is polynomial for instances whose constraint graph has bounded treewidth. This implies new upper bounds on extension complexity
The notion of directed treewidth was introduced by Johnson, Robertson, Seymour and Thomas [Journal of Combinatorial Theory, Series B, Vol 82, 2001] as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete prop
We consider the convex hull $P_{varphi}(G)$ of all satisfying assignments of a given MSO formula $varphi$ on a given graph $G$. We show that there exists an extended formulation of the polytope $P_{varphi}(G)$ that can be described by $f(|varphi|,tau
After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex C