ﻻ يوجد ملخص باللغة العربية
We present detailed spectral calculations for small Lieb lattices having up to $N=4$ number of cells, in the regime of half-filling, an instance of particular relevance for the nano-magnetism of discrete systems such as quantum dot arrays, due to the degenerate levels at mid-spectrum. While for the Hubbard interaction model -and even number of sites- the ground state spin is given by the Lieb theorem, the inclusion of long range interaction -or odd number of sites- make the spin state not a priori known, which justifies our approach. We calculate also the excitation energies, which are of experimental importance, and find significant variation induced by the interaction potential. One obtains insights on the mechanisms involved that impose as ground state the Lieb state with lower spin rather than the Hund one with maximum spin for the degenerate levels, showing this in the first and second order of the interaction potential for the smaller lattices. The analytical results concorde with the numerical ones, which are performed by exact diagonalization calculations or by a combined mean-field and configuration interaction method. While the Lieb state is always lower in energy than the Hund state, for strong long-range interaction, when possible, another minimal spin state is imposed as ground state.
The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density
Since in coupled-cluster (CC) theory ground-state and excitation energies are eigenvalues of a non-Hermitian matrix, these energies can in principle take on complex values. In this paper we discuss the appearance of complex energy values in CC calcul
The ground-state energy E_0 of a spin glass is an example of an extreme statistic. We consider the large deviations of this energy for a variety of models when the number of spins N goes to infinity. In most cases, the behavior can be understood qual
We investigate the ground-state energy and spin of disordered quantum dots using spin-density-functional theory. Fluctuations of addition energies (Coulomb-blockade peak spacings) do not scale with average addition energy but remain proportional to l
Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility G