ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclusive three jet production at the LHC at 7 and 13 TeV collision energies

70   0   0.0 ( 0 )
 نشر من قبل Grigorios Chachamis
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss briefly a recent study of new observables in LHC inclusive events with three tagged jets. One jet is in the forward direction, the second is in the backward direction and well-separated in rapidity from the first, whereas, the third tagged jet is to be found in more central regions of the detector. Taking into consideration that non-tagged mini-jet emissions are allowed and that they may be accounted for by the BFKL gluon Green function, we project the cross sections on azimuthal-angle components and define suitable ratios based on these projections which can provide several distinct tests of the BFKL dynamics.



قيم البحث

اقرأ أيضاً

We propose the study of new observables in LHC inclusive events with three tagged jets, one in the forward direction, one in the backward direction and both well-separated in rapidity from the each other (Mueller-Navelet jets), together with a third jet tagged in central regions of rapidity. Since non-tagged associated mini-jet multiplicity is allowed, we argue that projecting the cross sections on azimuthal-angle components can provide several distinct tests of the BFKL dynamics. Realistic LHC kinematical cuts are introduced.
We provide a description of the transverse momentum spectrum of single inclusive forward jets produced at the LHC, at the center-of-mass energies of 7 and 13 TeV, using the high energy factorization (HEF) framework. We subsequently study double inclu sive forward jet production and, in particular, we calculate contributions to azimuthal angle distributions coming from double parton scattering. We also compare our results for double inclusive jet production to those obtained with the Pythia Monte Carlo generator. This comparison confirms that the HEF resummation acts like an initial state parton shower. It also points towards the need to include final state radiation effects in the HEF formalism.
100 - Julien Baglio , Le Duc Ninh 2019
We present a study of the polarization observables of the $W$ and $Z$ bosons in the process $p p to W^pm Zto e^pm u_e mu^+mu^-$ at the 13 TeV Large Hadron Collider. The calculation is performed at next-to-leading order, including the full QCD correc tions as well as the electroweak corrections, the latter being calculated in the double-pole approximation. The results are presented in the helicity coordinate system adopted by ATLAS and for different inclusive cuts on the di-muon invariant mass. We define left-right charge asymmetries related to the polarization fractions between the $W^+ Z$ and $W^- Z$ channels and we find that these asymmetries are large and sensitive to higher-order effects. Similar findings are also presented for charge asymmetries related to a P-even angular coefficient.
A study of differential cross sections for the production of three and four jets in multi-Regge kinematics is presented. The main focus lies on the azimuthal angle dependences in events with two forward/backward jets are tagged in the final state. Fu rthermore, the tagging of one or two extra jets in more central regions of the detector with a relative separation in rapidity from each other is requested. It is found that the dependence of the cross sections on the transverse momenta and the rapidities of the central jet(s) can offer new means of studying the onset of BFKL dynamics.
We calculate the production of a W boson in association with up to two jets including at least one b-jet to next-to-leading order (NLO) in QCD at the CERN Large Hadron Collider with 7 TeV center-of-mass energy. Both exclusive and inclusive event cros s section and b-jet cross sections are presented. The calculation is performed consistently in the five-flavor-number scheme where both q anti-q and bq (q == b) initiated parton level processes are included at NLO QCD. We study the residual theoretical uncertainties of the NLO predictions due to the renormalization and factorization scale dependence, to the uncertainty from the parton distribution functions, and to the values of alpha_s and the bottom-quark mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا