ﻻ يوجد ملخص باللغة العربية
We study local activity and its opposite, local passivity, for linear systems and show that generically an eigenvalue of the system matrix with positive real part implies local activity. If all state variables are port variables we prove that the system is locally active if and only if the system matrix is not dissipative. Local activity was suggested by Leon Chua as an indicator for the emergence of complexity of nonlinear systems. We propose an abstract scheme which indicates how local activity could be applied to nonlinear systems and list open questions about possible consequences for complexity.
This note introduces bilinear estimates intended as a step towards an $L^infty$-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.
We study the trace class perturbations of the whole-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we refine the Lieb--Thirring inequality d
We present a novel model-order reduction (MOR) method for linear time-invariant systems that preserves passivity and is thus suited for structure-preserving MOR for port-Hamiltonian (pH) systems. Our algorithm exploits the well-known spectral factori
In this paper, we review several results from singularly perturbed differential equations with multiple small parameters. In addition, we develop a general conceptual framework to compare and contrast the different results by proposing a three-step p
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.