ﻻ يوجد ملخص باللغة العربية
Automatically identifying data types of web structured data is a key step in the process of web data integration. Web structured data is usually associated with entities or objects in a particular domain. In this paper, we aim to map attributes of an entity in a given domain to pre-specified classes of attributes in the same domain based on their values. To perform this task, we propose a hybrid deep learning network that relies on the format of the attributes values. It does so without any pre-processing or using pre-defined hand-crafted features. The hybrid network combines sequence-based neural networks, namely convolutional neural networks (CNN) and recurrent neural networks (RNN), to learn the sequence structure of attributes values. The CNN captures short-distance dependencies in these sequences through a sliding window approach, and the RNN captures long-distance dependencies by storing information of previous characters. These networks create different vector representations of the input sequence which are combined using a pooling layer. This layer applies a specific operation on these vectors in order to capture their most useful patterns for the task. Finally, on top of the pooling layer, a softmax function predicts the label of a given attribute value. We evaluate our strategy in four different web domains. The results show that the pooling network outperforms previous approaches, which use some kind of input pre-processing, in all domains.
Electrocardiography plays an essential role in diagnosing and screening cardiovascular diseases in daily healthcare. Deep neural networks have shown the potentials to improve the accuracies of arrhythmia detection based on electrocardiograms (ECGs).
Digital data is a gold mine for modern journalism. However, datasets which interest journalists are extremely heterogeneous, ranging from highly structured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journ
Nowadays, journalism is facilitated by the existence of large amounts of digital data sources, including many Open Data ones. Such data sources are extremely heterogeneous, ranging from highly struc-tured (relational databases), semi-structured (JSON
A challenge for data imputation is the lack of knowledge. In this paper, we attempt to address this challenge by involving extra knowledge from web. To achieve high-performance web-based imputation, we use the dependency, i.e.FDs and CFDs, to impute
Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 minutes. Smart meter data are typically bundled with social economic data in an