ﻻ يوجد ملخص باللغة العربية
We propose an entropic measure of non-classical correlations in general mixed states of fermion systems, based on the loss of information due to the unread measurement of the occupancy of single particle states of a given basis. When minimized over all possible single particle bases, the measure reduces to an entanglement entropy for pure states and vanishes only for states which are diagonal in a Slater determinant basis. The approach is also suitable for states having definite number parity yet not necessarily a fixed particle number, in which case the minimization can be extended to all bases related through a Bogoliubov transformation if quasiparticle mode measurements are also considered. General stationary conditions for determining the optimizing basis are derived. For a mixture of a general pure state with the maximally mixed state, a general analytic evaluation of the present measure and optimizing basis is provided, which shows that non-entangled mixed states may nonetheless exhibit a non-zero information loss.
We introduce a general bipartite-like representation and Schmidt decomposition of an arbitrary pure state of $N$ indistinguishable fermions, based on states of $M<N$ and $(N-M)$ fermions. It is directly connected with the reduced $M$- and $(N-M)$-bod
Quantum chaotic interacting $N$-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales $sim!log N$. Here we show that, near criticality, certain many-body systems exhibit fast init
We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource.
We provide an analytical proof of universality for bound states in one-dimensional systems of two and three particles, valid for short-range interactions with negative or vanishing integral over space. The proof is performed in the limit of weak pair
We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact correspondence between them arises when the states are constrained to have a definite local number parity. Moreover, for arbitrary states in