ترغب بنشر مسار تعليمي؟ اضغط هنا

One-body information loss in fermion systems

243   0   0.0 ( 0 )
 نشر من قبل Raul Rossignoli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an entropic measure of non-classical correlations in general mixed states of fermion systems, based on the loss of information due to the unread measurement of the occupancy of single particle states of a given basis. When minimized over all possible single particle bases, the measure reduces to an entanglement entropy for pure states and vanishes only for states which are diagonal in a Slater determinant basis. The approach is also suitable for states having definite number parity yet not necessarily a fixed particle number, in which case the minimization can be extended to all bases related through a Bogoliubov transformation if quasiparticle mode measurements are also considered. General stationary conditions for determining the optimizing basis are derived. For a mixture of a general pure state with the maximally mixed state, a general analytic evaluation of the present measure and optimizing basis is provided, which shows that non-entangled mixed states may nonetheless exhibit a non-zero information loss.



قيم البحث

اقرأ أيضاً

We introduce a general bipartite-like representation and Schmidt decomposition of an arbitrary pure state of $N$ indistinguishable fermions, based on states of $M<N$ and $(N-M)$ fermions. It is directly connected with the reduced $M$- and $(N-M)$-bod y density matrices (DMs), which have the same spectrum in such states. The concept of $M$-body entanglement emerges naturally in this scenario, generalizing that of one-body entanglement. Rigorous majorization relations satisfied by the normalized $M$-body DM are then derived, which imply that the associated entropy will not increase, on average, under a class of operations which have these DMs as post-measurement states. Moreover, such entropy is an upper bound to the average bipartite entanglement entropy generated by a class of operations which map the original state to a bipartite state of $M$ and $N-M$ effectively distinguishable fermions. Analytic evaluation of the spectrum of $M$-body DMs in some strongly correlated fermionic states is also provided.
Quantum chaotic interacting $N$-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales $sim!log N$. Here we show that, near criticality, certain many-body systems exhibit fast init ial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-$N$ limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing $hbar/tau$, again given by $tau! sim! log N$. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasi-periodic recurrences indicating reversibility.
We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure $N$-fermion state, from which the SPDM [together with the $(N-1)$-body density matrix] can be derived. It is then proved that under FLO operations, the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.
We provide an analytical proof of universality for bound states in one-dimensional systems of two and three particles, valid for short-range interactions with negative or vanishing integral over space. The proof is performed in the limit of weak pair -interactions and covers both binding energies and wave functions. Moreover, in this limit the results are formally shown to converge to the respective ones found in the case of the zero-range contact interaction.
60 - N. Gigena , R. Rossignoli 2017
We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact correspondence between them arises when the states are constrained to have a definite local number parity. Moreover, for arbitrary states in a four dimensional single-particle Hilbert space, the fermion entanglement is shown to measure the entanglement between two distinguishable qubits defined by a suitable partition of this space. Such entanglement can be used as a resource for tasks like quantum teleportation. On the other hand, this fermionic entanglement provides a lower bound to the entanglement of an arbitrary bipartition although in this case the local states involved will generally have different number parities. Finally the fermionic implementation of the teleportation and superdense coding protocols based on qubits with odd and even number parity is discussed, together with the role of the previous types of entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا