ترغب بنشر مسار تعليمي؟ اضغط هنا

Clues to the nature of ultra diffuse galaxies from estimated galaxy velocity dispersions

134   0   0.0 ( 0 )
 نشر من قبل Dennis Zaritsky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dennis Zaritsky




اسأل ChatGPT حول البحث

We describe how to estimate the velocity dispersions of ultra diffuse galaxies, UDGs, using a previously defined galaxy scaling relationship. The method is accurate for the two UDGs with spectroscopically measured dispersions, as well as for ultra compact galaxies, ultra faint galaxies, and stellar systems with little or no dark matter. This universality means that the relationship can be applied without further knowledge or prejudice regarding the structure of a galaxy. We then estimate the velocity dispersions of UDGs drawn from two published samples and examine the distribution of total masses. We find, in agreement with the previous studies of two individual UDGs, that these systems are dark matter dominated systems, and that they span a range of at least $10^{10} < M_{200}/M_odot < 10^{12} $. These galaxies are not, as an entire class, either all dwarfs or all failed $L_*$ galaxies. Estimates of the velocity dispersions can also help identify interesting subsets of UDGs, such as those that are likely to have the largest mass-to-light ratios, for subsequent spectroscopic study.



قيم البحث

اقرأ أيضاً

The possibility that ultra-diffuse galaxies lacking dark matter has recently stimulated interest to check the validity of Modified Newton Dynamics (MOND) predictions on the scale of such galaxies. It has been shown that the External Field Effect (EFE ) induced by the close-by galaxy can suppress the velocity dispersion of these systems, so that they appear almost dark matter free in the Newtonian context. Here, following up on this, we are making a priori predictions for the velocity dispersion of 22 ultra-diffuse galaxies in the nearby Universe. This sample can be used to test MOND and the EFE with future follow-up measurements. We construct a catalog of nearby ultra-diffuse galaxies in galaxy group environments, and set upper and lower limits for the possible velocity dispersion allowed in MOND, taking into account possible variations in the mass-to-light ratio of the dwarf and in the distance to the galaxy group. The prediction for the velocity dispersion is made as a function of the three dimensional separation of the dwarf to its host. In 17 out of 22 cases, the EFE plays a crucial role in the prediction.
We use thirty-eight high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the g lobal star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few $10^9$ M$_{odot}$; at a fixed halo mass, WDM produces fewer stars than CDM; and finally at halo masses below $10^9$ M$_{odot}$, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below $sim 10^7$ M$_{odot}$. For $z > 7$, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at $z sim 6$. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.
124 - Adi Nusser 2019
A scenario for achieving a low velocity dispersion for the galaxy [KKS 2000]04 (aka NGC 1052-DF2) and similar galaxies is presented. A progenitor halo corresponding to a $z=0$ halo of mass $sim 5times 10^{10}; textrm{M}_odot$ and a low concentratio n parameter (but consistent with cosmological simulations) infalls onto a Milky Way-size host at early times. {Substantial removal of cold gas} from the inner regions by supernova feedback and ram pressure, assisted by tidal stripping of the dark matter in the outer regions, leads to a substantial reduction of the velocity dispersion of stars within one effective radius. In this framework, the observed stellar content of [KKS 2000]04 is associated with a progenitor mass close to that inferred from the global stellar-to-halo-mass ratio. As far as the implications of kinematics are concerned, even if at a $sim 20 $ Mpc distance, it is argued that [KKS 2000]04 is no more peculiar than numerous early type galaxies with seemingly little total dark-matter content.
We use Keck/DEIMOS spectroscopy to confirm the cluster membership of 16 ultra-diffuse galaxies (UDGs) in the Coma cluster, bringing the total number of spectroscopically con- firmed UDGs to 24. We also identify a new cluster background UDG. In this p ilot study of Coma UDGs in velocity phase-space, we find evidence that most present-day Coma UDGs have a recent infall epoch while a few may be ancient infalls. These recent infall UDGs have higher absolute relative line-of-sight velocities, bluer optical colors, and are smaller in size, unlike the ancient infalls. The kinematics of the spectroscopically confirmed Coma UDG sample is similar to that of the cluster late-type galaxy population. Our velocity phase-space analysis suggests that present-day cluster UDGs have a predominantly accretion origin from the field, acquire velocities corresponding to the mass of the cluster at accretion as they are accelerated towards the cluster center, and become redder and bigger as they experience the various physical processes at work within the cluster.
101 - Yousuke Utsumi 2020
We use MMT spectroscopy and deep Subaru Hyper Suprime-Cam (HSC) imaging to compare the spectroscopic central stellar velocity dispersion of quiescent galaxies with the effective dispersion of the dark matter halo derived from the stacked lensing sign al. The spectroscopic survey (the Smithsonian Hectospec Lensing Survey) provides a sample of 4585 quiescent galaxy lenses with measured line-of-sight central stellar velocity dispersion ($sigma_{rm SHELS}$) that is more than 85% complete for $R < 20.6$, $D_{n}4000> 1.5$ and $M_{star} > 10^{9.5}{rm M}_{odot}$. The median redshift of the sample of lenses is 0.32. We measure the stacked lensing signal from the HSC deep imaging. The central stellar velocity dispersion is directly proportional to the velocity dispersion derived from the lensing $sigma_{rm Lens}$, $sigma_{rm Lens} = (1.05pm0.15)sigma_{rm SHELS}+(-21.17pm35.19)$. The independent spectroscopic and weak lensing velocity dispersions probe different scales, $sim3$kpc and $gtrsim$ 100 kpc, respectively, and strongly indicate that the observable central stellar velocity dispersion for quiescent galaxies is a good proxy for the velocity dispersion of the dark matter halo. We thus demonstrate the power of combining high-quality imaging and spectroscopy to shed light on the connection between galaxies and their dark matter halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا