ﻻ يوجد ملخص باللغة العربية
We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ~100Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ~60 binaries more accurately than the error volume of ~100Mpc^3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4sigma level, which amounts to ~9%.
In a recent paper, we argued that systematic uncertainties related to the choice of Cepheid color-luminosity calibration may have a large influence on the tension between the Hubble constant as inferred from distances to Type Ia supernovae and the co
Motivated by the large observed diversity in the properties of extra-galactic extinction by dust, we re-analyse the Cepheid calibration used to infer the local value of the Hubble constant, $H_0$, from Type Ia supernovae. Unlike the SH0ES team, we do
The $Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have
We use supernovae measurements, calibrated by the local determination of the Hubble constant $H_0$ by SH0ES, to interpolate the distance-redshift relation using Gaussian process regression. We then predict, independent of the cosmological model, the
We have begun an exciting era for gravitational wave detection, as several world-leading experiments are breaching the threshold of anticipated signal strengths. Pulsar timing arrays (PTAs) are pan-Galactic gravitational wave detectors that are alrea