ﻻ يوجد ملخص باللغة العربية
We investigate a potential of measuring properties of a heavy resonance X, exploiting jet substructure techniques. Motivated by heavy higgs boson searches, we focus on the decays of X into a pair of (massive) electroweak gauge bosons. More specifically, we consider a hadronic Z boson, which makes it possible to determine properties of X at an earlier stage. For $m_X$ of O(1) TeV, two quarks from a Z boson would be captured as a merged jet in a significant fraction of events. The use of the merged jet enables us to consider a Z-induced jet as a reconstructed object without any combinatorial ambiguity. We apply a conventional jet substructure method to extract four-momenta of subjets from a merged jet. We find that jet substructure procedures may enhance features in some kinematic observables formed with subjets. Subjet momenta are fed into the matrix element associated with a given hypothesis on the nature of X, which is further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM with current jet substructure techniques can be a very powerful discriminator in identifying the physics nature of X. We also discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.
The development of techniques for identifying hadronic signals from the overwhelming multi-jet backgrounds is an important part of the Large Hadron Collider (LHC) program. Of prime importance are resonances decaying into a pair of partons, such as th
We reframe common tasks in jet physics in probabilistic terms, including jet reconstruction, Monte Carlo tuning, matrix element - parton shower matching for large jet multiplicity, and efficient event generation of jets in complex, signal-like region
We study jet substructures of a boosted polarized top quark, which undergoes the semileptonic decay $tto bell u$, in the perturbative QCD framework. The jet mass distribution (energy profile) is factorized into the convolution of a hard top-quark dec
We study jet substructures of a boosted polarized top quark, which undergoes the hadronic decay $tto b ubar d$, in the perturbative QCD framework, focusing on the energy profile and the differential energy profile. These substructures are factorized
In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Follow