ﻻ يوجد ملخص باللغة العربية
Correlation functions in quantum field theory are calculated using Feynman amplitudes, which are finite dimensional integrals associated to graphs. The integrand is the exponential of the ratio of the first and second Symanzik polynomials associated to the Feynman graph, which are described in terms of the spanning trees and spanning 2-forests of the graph, respectively. In a previous paper with Bloch, Burgos and Fresan, we related this ratio to the asymptotic of the Archimedean height pairing between degree zero divisors on degenerating families of Riemann surfaces. Motivated by this, we consider in this paper the variation of the ratio of the two Symanzik polynomials under bounded perturbations of the geometry of the graph. This is a natural problem in connection with the theory of nilpotent and SL2 orbits in Hodge theory. Our main result is the boundedness of variation of the ratio. For this we define the exchange graph of a given graph which encodes the exchange properties between spanning trees and spanning 2-forests in the graph. We provide a description of the connected components of this graph, and use this to prove our result on boundedness of the variations.
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integra
In this paper we present a general scheme for how to relate differential equations for the recurrence coefficients of semi-classical orthogonal polynomials to the Painleve equations using the geometric framework of Okamotos space of initial values. W
The binomial Eulerian polynomials, introduced by Postnikov, Reiner, and Williams, are $gamma$-positive polynomials and can be interpreted as $h$-polynomials of certain flag simplicial polytopes. Recently, Athanasiadis studied analogs of these polynom
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr