ترغب بنشر مسار تعليمي؟ اضغط هنا

Behaviour of elements from lithium to europium in stars with and without planets

95   0   0.0 ( 0 )
 نشر من قبل Valery Kovtyukh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted an analysis of the distribution of elements from lithium to europium in 200 dwarfs in the solar neighbourhood ~20 pc with temperatures in the range 4800-6200 K and metallicities [Fe/H] higher than -0.5 dex. Determinations of atmospheric parameters and the chemical composition of the dwarfs were taken from our previous studies. We found that the lithium abundances in the planet-hosting solar-analog stars of our sample were lower than those in the stars without planetary systems. Our results reveal no significant differences exceeding the determination errors for the abundances of investigated elements, except for aluminium and barium, which are more and less abundant in the planet-hosting stars, respectively. We did not find confident dependences of the lithium, aluminium and barium abundances on the ages of our target stars (which is probable because of the small number of stars). Furthermore, we found no correlation between the abundance differences in [El/Fe] and the condensation temperature (Tcond) for stars in the 16 Cyg binary system, unlike the case for 51 Peg (HD 217014), for which a slight excess of volatile elements and a deficit of refractories were obtained relative to those of solar twins. We found that one of the components of 16 Cyg exhibits a slightly higher average abundance than its counterpart (<[El/H](A-B)> = 0.08+/-0.02 dex); however, no significant abundance trend versus Tcond was observed. Owing to the relatively large errors, we cannot provide further constraints for this system.



قيم البحث

اقرأ أيضاً

We have been analyzing a large sample of solar-like stars with and without planets in order to homogeneously measure their photospheric parameters and Carbon abundances. Our sample contains around 200 stars in the solar neighborhood observed with the ELODIE spectrograph, for which the observational data are publicly available. We performed spectral synthesis of prominent bands of C$_{2}$ and C I lines, aiming to accurately obtain the C abundances. We intend to contribute homogeneous results to studies that compare elemental abundances in stars with and without known planets. New arguments will be brought forward to the discussion of possible chemical anomalies that have been suggested in the literature, leading us to a better understanding of the planetary formation process. In this work we focus on the C abundances in both stellar groups of our sample.
One of the most difficult properties to derive for stars is their age. For cool main-sequence stars, gyrochronology relations can be used to infer stellar ages from measured rotation pe- riods and HR Diagram positions. These relations have few calibr ators with known ages for old, long rotation period stars. There is a significant sample of old Kepler objects of inter- est, or KOIs, which have both measurable surface rotation periods and precise asteroseismic measurements from which ages can be accurately derived. In this work we determine the age and the rotation period of solar-like pulsating KOIs to both compare the rotation properties of stars with and without known planets and enlarge the gyrochronology calibration sample for old stars. We use Kepler photometric light curves to derive the stellar surface rotation peri- ods while ages are obtained with asteroseismology using the Asteroseismic Modeling Portal in which individual mode frequencies are combined with high-resolution spectroscopic pa- rameters. We thus determine surface rotation periods and ages for 11 planet-hosting stars, all over 2 Gyr old. We find that the planet-hosting stars exhibit a rotational behaviour that is consistent with the latest age-rotation models and similar to the rotational behaviour of stars without detected planets. We conclude that these old KOIs can be used to test and calibrate gyrochronology along with stars not known to host planets.
We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths of Fe I and Fe II lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2, CN, C I, O I, and Na I features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhibit underabundance in [C/Fe] and overabundance in [N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally attributed to evolution-induced mixing processes in the envelope of evolved stars; ii) for solar analogs only, the abundance trends with the condensation temperature of the elements are correlated with age and anticorrelated with the surface gravity, which is in agreement with recent studies; iii) as in the case of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H] for all the analyzed elements, except for O and Ba (the former due to limitations of statistics), confirming previous findings in the literature that not only iron has an important relation with the planetary formation; and iv) giant planet hosts are also significantly overabundant for the same metallicity when the elements from Mg to Cu are combined together.
We present a determination of photospheric parameters and C abundances for a sample of 172 G and K dwarfs, subgiants, and giants with and without detected planets in the solar neighbourhood. The analysis was based on high S/N and high resolution spec tra observed with the ELODIE spectrograph, and for which the observational data was publicly available. We intend to contribute precise and homogeneous C abundances in studies that compare the behaviour of light elements in stars, hosting planets or not. This will bring new arguments to the discussion of possible anomalies that have been suggested and will contribute to a better understanding of different planetary formation process. The photospheric parameters were computed through the excitation potential, equivalent widths, and ionisation equilibrium of Fe lines selected in the spectra. C abundances were derived from spectral synthesis applied to prominent molecular head bands of C_2 Swan (5128 and 5165) and to a C atomic line (5380.3). The distribution of [C/Fe] vs. [Fe/H] shows no difference in the behaviour of planet-host stars in comparison with stars for which no planet was detected, for both dwarf and giant subsamples. This result is in agreement with the hypothesis of primordial origin for the chemical abundances presently observed instead of self-enrichment during the planetary system formation and evolution. Additionally, giants are clearly depleted in [C/Fe] (~0.14 dex) when compared with dwarfs, which is probably related to evolution-induced mixing of H-burning products in the envelope of evolved stars. Subgiants, although in small number, seems to follow the same C abundance distribution as dwarfs. We also analysed the kinematics of the sample stars that, in majority, are members of the Galaxys thin disc. Finally, comparisons with other analogue studies were performed and, within the uncertainties, showed good agreement.
137 - C. Siqueira Mello 2012
HD 140283 is a nearby (V=7.7) subgiant metal-poor star, extensively analysed in the literature. Although many spectra have been obtained for this star, none showed a signal-to-noise (S/N) ratio high enough to enable a very accurate derivation of abun dances from weak lines. The detection of europium proves that the neutron-capture elements in this star originate in the r-process, and not in the s-process, as recently claimed in the literature. Based on the OSMARCS 1D LTE atmospheric model and with a consistent approach based on the spectrum synthesis code Turbospectrum, we measured the europium lines at 4129 {AA} and 4205 {AA}, taking into account the hyperfine structure of the transitions. The spectrum, obtained with a long exposure time of seven hours at the Canada-France-Hawaii Telescope (CFHT), has a resolving power of 81000 and a S/N ratio of 800 at 4100 {AA}. We were able to determine the abundance A(Eu)=-2.35 dex, compatible with the value predicted for the europium from the r-process. The abundance ratio [Eu/Ba]=+0.58 dex agrees with the trend observed in metal-poor stars and is also compatible with a strong r-process contribution to the origin of the neutron-capture elements in HD 140283.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا