ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative transfer in disc galaxies $-$ V. The accuracy of the KB approximation

164   0   0.0 ( 0 )
 نشر من قبل Dukhang Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined ($i gtrsim 85^{circ}$) and/or optically thick (central face-on optical depth $gtrsim1$) galaxy models, the approximation can give rise to substantial errors, sometimes, up to $gtrsim 40%$. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no simple recipe to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though its slower than the KB approximation.



قيم البحث

اقرأ أيضاً

The large vertical scale heights of the diffuse ionised gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three dim ensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds (SILCC) project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionising sources to get an appropriate ionising spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.
Combining Monte Carlo radiative transfer simulations and accurate 2D bulge/disc decompositions, we present a new study to investigate the effects of dust attenuation on the apparent structural properties of the disc and bulge of spiral galaxies. We f ind that dust affects the results from such decompositions in ways which cannot be identified when one studies dust effects on bulge and disc components separately. In particular, the effects of dust in galaxies hosting pseudo-bulges might be different from those in galaxies hosting classical bulges, even if their dust content is identical. Confirming previous results, we find that disc scale lengths are overestimated when dust effects are important. In addition, we also find that bulge effective radii and Sersic indices are underestimated. Furthermore, the apparent attenuation of the integrated disc light is underestimated, whereas the corresponding attenuation of bulge light is overestimated. Dust effects are more significant for the bulge parameters, and, combined, they lead to a strong underestimation of the bulge-to-disc ratio, which can reach a factor of two in the V band, even at relatively low galaxy inclinations and dust opacities. Nevertheless, it never reaches factors larger than about three, which corresponds to a factor of two in bulge-to-total ratio. Such effect can have an impact on studies of the black hole/bulge scaling relations.
Investigating the dust heating mechanisms in galaxies provides a deeper understanding of how the internal energy balance drives their evolution. Over the last decade, radiative transfer simulations based on the Monte Carlo method have underlined the role of the various stellar populations heating the diffuse dust. Beyond the expected heating through ongoing star formation, both older stellar population (> 8Gyr) and even AGN can contribute energy to the infrared emission of diffuse dust. Here, we examine how the radiation of an external heating source, like the less massive galaxy NGC5195, in the M51 interacting system, could affect the heating of the diffuse dust of its parent galaxy, NGC5194, and vice versa. To quantify the exchange of energy between the two galaxies we use SKIRT, a state-of-the-art Monte Carlo radiative transfer code. In the interest of modelling, the assumed centre-to-centre distance separation between the two galaxies is 10kpc. Our model reproduces the global SED of the system, and it closely matches the observed images. In total, 40.7% of the intrinsic stellar radiation of the combined system is absorbed by dust. Furthermore, we quantify the contribution of the various dust heating sources in the system, and find that the young stellar population of NGC5194 is the predominant dust-heating agent, with a global heating fraction of 71.2%. Another 23% is provided by the older stellar population of the same galaxy, while the remaining 5.8% has its origin in NGC5195. Locally, we find that the regions of NGC5194 closer to NGC5195 are significantly affected by the radiation field of the latter, with the absorbed energy fraction rising up to 38%. The contribution of NGC5195 remains under the percentage level in the outskirts of the disc of NGC5194. This is the first time that the heating of the diffuse dust by a companion galaxy is quantified in a nearby interacting system.
87 - Anne Hutter 2018
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The model accounts for recombination s and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar HII and HeII morphologies and power spectra of the HI 21cm signal throughout reionization. As we do not track partial ionization of HeII, the extent of the double ionized helium (HeIII) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
117 - Angelos Nersesian 2020
Context: Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of UV and optical photons em itted by the youngest (<= 100 Myr) stars. Consequently, thermal re-emission by dust at FIR wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stars might be more significant. Advances in radiation transfer (RT) simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims: As one of the main goals in the DustPedia project, we have constructed detailed 3D stellar and dust RT models for nearby galaxies. We analyse the contribution of the different stellar populations to the dust heating in four face-on barred galaxies: NGC1365, M83, M95, and M100. We aim to quantify the fraction directly related to young stars, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Results: We derive global attenuation laws for each galaxy and confirm that galaxies of high sSFR have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stars, and the dust temperature. We find that the young stars are the main contributors to the dust heating, donating, on average ~59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ~53% in the bar region and ~38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stars and the sSFR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا