ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing of Five PALFA-Discovered Millisecond Pulsars

79   0   0.0 ( 0 )
 نشر من قبل Kevin Stovall
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery and timing results for five millisecond pulsars (MSPs) from the Arecibo PALFA survey: PSRs J1906+0055, J1914+0659, J1933+1726, J1938+2516, and J1957+2516. Timing observations of the 5 pulsars were conducted with the Arecibo and Lovell telescopes for time spans ranging from 1.5 to 3.3 yr. All of the MSPs except one (PSR J1914+0659) are in binary systems with low eccentricities. PSR J1957+2516 is likely a redback pulsar, with a ~0.1 $M_odot$ companion and possible eclipses that last ~10% of the orbit. The position of PSR J1957+2516 is also coincident with a NIR source. All 5 MSPs are distant (>3.1 kpc) as determined from their dispersion measures, and none of them show evidence of $gamma$-ray pulsations in a search of Fermi Gamma-Ray Space Telescope data. These 5 MSPs bring the total number of MSPs discovered by the PALFA survey to 26 and further demonstrate the power of this survey in finding distant, highly dispersed MSPs deep in the Galactic plane.



قيم البحث

اقرأ أيضاً

We present the discovery of five millisecond pulsars (MSPs) from the PALFA Galactic plane survey using Arecibo. Four of these (PSRs J0557+1551, J1850+0244, J1902+0300, and J1943+2210) are binary pulsars whose companions are likely white dwarfs, and o ne (PSR J1905+0453) is isolated. Phase-coherent timing solutions, ranging from $sim$1 to $sim$3 years in length, and based on observations from the Jodrell Bank and Arecibo telescopes, provide precise determinations of spin, orbital, and astrometric parameters. All five pulsars have large dispersion measures ($>100$ pc cm$^{-3}$, within the top 20% of all known Galactic field MSPs) and are faint (1.4 GHz flux density < 0.1 mJy, within the faintest 5% of all known Galactic field MSPs), illustrating PALFAs ability to find increasingly faint, distant MSPs in the Galactic plane. In particular, PSR J1850+0244 has a dispersion measure of 540 pc cm$^{-3}$, the highest of all known MSPs. Such distant, faint MSPs are important input for accurately modeling the total Galactic MSP population.
We report on the discovery and timing observations of 29 distant long-period pulsars discovered in the ongoing Arecibo PALFA pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over sev eral years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5-0.5, while J1925+1720 is coincident with a high-energy Fermi gamma-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199-day binary orbit with a companion having a minimum mass of 0.33 solar masses. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.
We report on eight millisecond pulsars (MSPs) in binary systems discovered with the Arecibo PALFA survey. Phase-coherent timing solutions derived from 2.5 to 5 years of observations carried out at Arecibo and Jodrell Bank observatories are provided. PSR J1921+1929 is a 2.65-ms pulsar in a 39.6-day orbit for which we detect $gamma$-ray pulsations in archival Fermi data. PSR J1928+1245 is a very low-mass-function system with an orbital period of 3.3 hours that belongs to the non-eclipsing black widow population. We also present PSR J1932+1756, the longest-orbital-period (41.5 days) intermediate-mass binary pulsar known to date. In light of the numerous discoveries of binary MSPs over the past years, we characterize the Galactic distribution of known MSP binaries in terms of binary class. Our results support and strengthen previous claims that the scatter in the Galactic scale height distribution correlates inversely with the binary mass function. We provide evidence of observational biases against detecting the most recycled pulsars near the Galactic plane, which overestimates the scale height of lighter systems. A possible bimodality in the mass function of MSPs with massive white dwarfs is also reported.
We have made extensive observations of 35 distant slow (non-recycled) pulsars discovered in the ongoing Arecibo PALFA pulsar survey. Timing observations of these pulsars over several years at Arecibo Observatory and Jodrell Bank Observatory have yiel ded high-precision positions and measurements of rotation properties. Despite being a relatively distant population, these pulsars have properties that mirror those of the previously known pulsar population. Many of the sources exhibit timing noise, and one underwent a small glitch. We have used multifrequency data to measure the interstellar scattering properties of these pulsars. We find scattering to be higher than predicted along some lines of sight, particularly in the Cygnus region. Lastly, we present XMM-Newton and Chandra observations of the youngest and most energetic of the pulsars, J1856+0245, which has previously been associated with the GeV-TeV pulsar wind nebula HESS J1857+026.
We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during re-processing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546-5925) has a spin period $P=7.8$ ms and is isolated. The other two (PSR J0921-5202 with $P=9.7$ ms and PSR J1146-6610 with $P=3.7$ ms) are in binary systems around low-mass ($>0.2 M_{odot}$) companions. Their respective orbital periods are $38$.2 d and $62.8$ d. While PSR J0921-5202 has a low orbital eccentricity $e=1.3 times 10^{-5}$, in keeping with many other Galactic MSPs, PSR J1146-6610 has a significantly larger eccentricity, $e = 7.4 times 10^{-3}$. This makes it a likely member of a group of eccentric MSP-He white dwarf binary systems in the Galactic disk whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellites Large Area Telescope, but no $gamma$-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا