ترغب بنشر مسار تعليمي؟ اضغط هنا

Containers for portable, productive and performant scientific computing

82   0   0.0 ( 0 )
 نشر من قبل Garth Wells
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Containers are an emerging technology that hold promise for improving productivity and code portability in scientific computing. We examine Linux container technology for the distribution of a non-trivial scientific computing software stack and its execution on a spectrum of platforms from laptop computers through to high performance computing (HPC) systems. We show on a workstation and a leadership-class HPC system that when deployed appropriately there are no performance penalties running scientific programs inside containers. For Python code run on large parallel computers, the run time is reduced inside a container due to faster library imports. The software distribution approach and data that we present will help developers and users decide on whether container technology is appropriate for them. We also provide guidance for the vendors of HPC systems that rely on proprietary libraries for performance on what they can do to make containers work seamlessly and without performance penalty.



قيم البحث

اقرأ أيضاً

Each day the world inches closer to a climate catastrophe and a sustainability revolution. To avoid the former and achieve the latter we must transform our use of energy. Surprisingly, todays growing problem is that there is too much wind and solar p ower generation at the wrong times and in the wrong places. We argue for the construction of TerraWatt: a geographically-distributed, large-scale, zero-carbon compute infrastructure using renewable energy and older hardware. Delivering zero-carbon compute for general cloud workloads is challenging due to spatiotemporal power variability. We describe the systems challenges in using intermittent renewable power at scale to fuel such an older, decentralized compute infrastructure.
Searching for geometric objects that are close in space is a fundamental component of many applications. The performance of search algorithms comes to the forefront as the size of a problem increases both in terms of total object count as well as in the total number of search queries performed. Scientific applications requiring modern leadership-class supercomputers also pose an additional requirement of performance portability, i.e. being able to efficiently utilize a variety of hardware architectures. In this paper, we introduce a new open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures. We examine scalable search algorithms with a focus on performance, including a highly efficient parallel bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and GPUs, and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.
288 - Keichi Takahashi 2021
Empirical Dynamic Modeling (EDM) is a state-of-the-art non-linear time-series analysis framework. Despite its wide applicability, EDM was not scalable to large datasets due to its expensive computational cost. To overcome this obstacle, researchers h ave attempted and succeeded in accelerating EDM from both algorithmic and implementational aspects. In previous work, we developed a massively parallel implementation of EDM targeting HPC systems (mpEDM). However, mpEDM maintains different backends for different architectures. This design becomes a burden in the increasingly diversifying HPC systems, when porting to new hardware. In this paper, we design and develop a performance-portable implementation of EDM based on the Kokkos performance portability framework (kEDM), which runs on both CPUs and GPUs while based on a single codebase. Furthermore, we optimize individual kernels specifically for EDM computation, and use real-world datasets to demonstrate up to $5.5times$ speedup compared to mpEDM in convergent cross mapping computation.
93 - Ying Mao , Yuqi Fu , Suwen Gu 2020
Businesses have made increasing adoption and incorporation of cloud technology into internal processes in the last decade. The cloud-based deployment provides on-demand availability without active management. More recently, the concept of cloud-nativ e application has been proposed and represents an invaluable step toward helping organizations develop software faster and update it more frequently to achieve dramatic business outcomes. Cloud-native is an approach to build and run applications that exploit the cloud computing delivery models advantages. It is more about how applications are created and deployed than where. The container-based virtualization technology, such as Docker and Kubernetes, serves as the foundation for cloud-native applications. This paper investigates the performance of two popular computational-intensive applications, big data, and deep learning, in a cloud-native environment. We analyze the system overhead and resource usage for these applications. Through extensive experiments, we show that the completion time reduces by up to 79.4% by changing the default setting and increases by up to 96.7% due to different resource management schemes on two platforms. Additionally, the resource release is delayed by up to 116.7% across different systems. Our work can guide developers, administrators, and researchers to better design and deploy their applications by selecting and configuring a hosting platform.
SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algor ithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا