ﻻ يوجد ملخص باللغة العربية
ANDy , Activity Networks with Delays, is a discrete time framework aimed at the qualitative modelling of time-dependent activities. The modular and concise syntax makes ANDy suitable for an easy and natural modelling of time-dependent biological systems (i.e., regulatory pathways). Activities involve entities playing the role of activators, inhibitors or products of biochemical network operation. Activities may have given duration, i.e., the time required to obtain results. An entity may represent an object (e.g., an agent, a biochemical species or a family of thereof) with a local attribute, a state denoting its level (e.g., concentration, strength). Entities levels may change as a result of an activity or may decay gradually as time passes by. The semantics of ANDy is formally given via high-level Petri nets ensuring this way some modularity. As main results we show that ANDy systems have finite state representations even for potentially infinite processes and it well adapts to the modelling of toxic behaviours. As an illustration, we present a classification of toxicity properties and give some hints on how they can be verified with existing tools on ANDy systems. A small case study on blood glucose regulation is provided to exemplify the ANDy framework and the toxicity properties.
The existence of a die-out threshold (different from the classic disease-invasion one) defining a region of slow extinction of an epidemic has been proved elsewhere for susceptible-aware-infectious-susceptible models without awareness decay, through
Central nervous system (CNS) tumors come with the vastly heterogeneous histologic, molecular and radiographic landscape, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown
We train a neural network to predict chemical toxicity based on gene expression data. The input to the network is a full expression profile collected either in vitro from cultured cells or in vivo from live animals. The output is a set of fine graine
Neural recordings are nonstationary time series, i.e. their properties typically change over time. Identifying specific changes, e.g. those induced by a learning task, can shed light on the underlying neural processes. However, such changes of intere
Motivation: Predicting Drug-Target Interaction (DTI) is a well-studied topic in bioinformatics due to its relevance in the fields of proteomics and pharmaceutical research. Although many machine learning methods have been successfully applied in this