ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain-induced spin resonance shifts in silicon devices

211   0   0.0 ( 0 )
 نشر من قبل Jarryd Pla
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In spin-based quantum information processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths and it is therefore important to study, understand and model such effects in order to better predict device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations we are able to reconstruct key features of our experiments, including the electron spin resonance spectra. Our results are consistent with a recently discovered mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.



قيم البحث

اقرأ أيضاً

Mechanical strain plays a key role in the physics and operation of nanoscale semiconductor systems, including quantum dots and single-dopant devices. Here we describe the design of a nanoelectronic device where a single nuclear spin is coherently con trolled via nuclear acoustic resonance (NAR) through the local application of dynamical strain. The strain drives spin transitions by modulating the nuclear quadrupole interaction. We adopt an AlN piezoelectric actuator compatible with standard silicon metal-oxide-semiconductor processing, and optimize the device layout to maximize the NAR drive. We predict NAR Rabi frequencies of order 200 Hz for a single $^{123}$Sb nucleus in a wide region of the device. Spin transitions driven directly by electric fields are suppressed in the center of the device, allowing the observation of pure NAR. Using electric field gradient-elastic tensors calculated by density-functional theory, we extend our predictions to other high-spin group-V donors in silicon, and to the isoelectronic $^{73}$Ge atom.
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $ pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
Larger arrays of electron spin qubits require radical improvements in fabrication and device uniformity. Here we demonstrate excellent qubit device uniformity and tunability from 300K down to mK temperatures. This is achieved, for the first time, by integrating an overlapping polycrystalline silicon-based gate stack in an all-Silicon and lithographically flexible 300mm flow. Low-disorder Si/SiO$_2$ is proved by a 10K Hall mobility of $1.5 cdot 10^4$ $cm^2$/Vs. Well-controlled sensors with low charge noise (3.6 $mu$eV/$sqrt{mathrm{Hz}}$ at 1 Hz) are used for charge sensing down to the last electron. We demonstrate excellent and reproducible interdot coupling control over nearly 2 decades (2-100 GHz). We show spin manipulation and single-shot spin readout, extracting a valley splitting energy of around 150 $mu$eV. These low-disorder, uniform qubit devices and 300mm fab integration pave the way for fast scale-up to large quantum processors.
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer. Despite long coherence times, achieving uniform magnetic control remains a hurdle for scale-up due to challenges in high-frequency magnetic field control at the nanometre-scale. Here, we present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot. The key advantage of utilising a donor-based system is that we can engineer the number of donor nuclei in each quantum dot. By creating multi-donor dots with antiparallel nuclear spin states and multi-electron occupation we can minimise the longitudinal magnetic field gradient, known to couple charge noise into the device and dephase the qubit. We describe the operation of the qubit and show that by minimising the hyperfine interaction of the nuclear spins we can achieve $pi/2-X$ gate error rates of $sim 10^{-4}$ using realistic noise models. We highlight that the low charge noise environment in these all-epitaxial phosphorus-doped silicon qubits will facilitate the realisation of strong coupling of the qubit to superconducting microwave cavities allowing for long-distance two-qubit operations.
Ensembles of bismuth donor spins in silicon are promising storage elements for microwave quantum memories due to their long coherence times which exceed seconds. Operating an efficient quantum memory requires achieving critical coupling between the s pin ensemble and a suitable high-quality factor resonator -- this in turn requires a thorough understanding of the lineshapes for the relevant spin resonance transitions, particularly considering the influence of the resonator itself on line broadening. Here, we present pulsed electron spin resonance measurements of ensembles of bismuth donors in natural silicon, above which niobium superconducting resonators have been patterned. By studying spin transitions across a range of frequencies and fields we identify distinct line broadening mechanisms, and in particular those which can be suppressed by operating at magnetic-field-insensitive `clock transitions. Given the donor concentrations and resonator used here, we measure a cooperativity $Csim 0.2$ and based on our findings we discuss a route to achieve unit cooperativity, as required for a quantum memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا