ﻻ يوجد ملخص باللغة العربية
We report on a class of quantum spin Hall insulators (QSHIs) in strained-layer InAs/GaInSb quantum wells, in which the bulk gaps are enhanced by up to five folds as compared to the binary InAs/GaSb QSHI. Remarkably, with consequently increasing edge velocity, the edge conductance at zero and applied magnetic fields manifests time reversal symmetry (TRS) -protected properties consistent with Z2 topological insulator. The InAs/GaInSb bilayers offer a much sought-after platform for future studies and applications of the QSHI.
We report low-temperature transport measurements in strained InAs/Ga0.68In0.32Sb quantum wells, which supports time-reversal symmetry-protected helical edge states. The temperature and bias voltage dependence of the helical edge conductance for devic
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
We study quantum spin Hall insulators with local Coulomb interactions in the presence of boundaries using dynamical mean field theory. We investigate the different influence of the Coulomb interaction on the bulk and the edge states. Interestingly, w
We study spin transport in the one- and two-electron regimes of parallel-coupled double quantum dots (DQDs). The DQDs are formed in InAs nanowires by a combination of crystal-phase engineering and electrostatic gating, with an interdot tunnel couplin
We realize p-p-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both ful