ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolution of ranking hierarchies in directed networks

94   0   0.0 ( 0 )
 نشر من قبل Paolo Barucca
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.



قيم البحث

اقرأ أيضاً

How popular a topic or an opinion appears to be in a network can be very different from its actual popularity. For example, in an online network of a social media platform, the number of people who mention a topic in their posts---i.e., its global po pularity---can be dramatically different from how people see it in their social feeds---i.e., its perceived popularity---where the feeds aggregate their friends posts. We trace the origin of this discrepancy to the friendship paradox in directed networks, which states that people are less popular than their friends (or followers) are, on average. We identify conditions on network structure that give rise to this perception bias, and validate the findings empirically using data from Twitter. Within messages posted by Twitter users in our sample, we identify topics that appear more frequently within the users social feeds, than they do globally, i.e., among all posts. In addition, we present a polling algorithm that leverages the friendship paradox to obtain a statistically efficient estimate of a topics global prevalence from biased perceptions of individuals. We characterize the bias of the polling estimate, provide an upper bound for its variance, and validate the algorithms efficiency through synthetic polling experiments on our Twitter data. Our paper elucidates the non-intuitive ways in which the structure of directed networks can distort social perceptions and resulting behaviors.
In a graph, a community may be loosely defined as a group of nodes that are more closely connected to one another than to the rest of the graph. While there are a variety of metrics that can be used to specify the quality of a given community, one co mmon theme is that flows tend to stay within communities. Hence, we expect cycles to play an important role in community detection. For undirected graphs, the importance of triangles -- an undirected 3-cycle -- has been known for a long time and can be used to improve community detection. In directed graphs, the situation is more nuanced. The smallest cycle is simply two nodes with a reciprocal connection, and using information about reciprocation has proven to improve community detection. Our new idea is based on the four types of directed triangles that contain cycles. To identify communities in directed networks, then, we propose an undirected edge-weighting scheme based on the type of the directed triangles in which edges are involved. We also propose a new metric on quality of the communities that is based on the number of 3-cycles that are split across communities. To demonstrate the impact of our new weighting, we use the standard METIS graph partitioning tool to determine communities and show experimentally that the resulting communities result in fewer 3-cycles being cut. The magnitude of the effect varies between a 10 and 50% reduction, and we also find evidence that this weighting scheme improves a task where plausible ground-truth communities are known.
Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, l ead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of providing a better estimate of (otherwise) unaccessible network properties, ultimately have a competitive advantage. In this paper, we address for the first time the issue of quantifying the information asymmetry arising from the network topology. To this aim, we define a novel index - InfoRank - intended to measure the quality of the information possessed by each node, computing the Shannon entropy of the ensemble conditioned on the node-specific information. Further, we test the performance of our novel ranking procedure in terms of the reconstruction accuracy of the (unaccessible) network structure and show that it outperforms other popular centrality measures in identifying the most informative nodes. Finally, we discuss the socio-economic implications of network information asymmetry.
Estimating distributions of node characteristics (labels) such as number of connections or citizenship of users in a social network via edge and node sampling is a vital part of the study of complex networks. Due to its low cost, sampling via a rando m walk (RW) has been proposed as an attractive solution to this task. Most RW methods assume either that the network is undirected or that walkers can traverse edges regardless of their direction. Some RW methods have been designed for directed networks where edges coming into a node are not directly observable. In this work, we propose Directed Unbiased Frontier Sampling (DUFS), a sampling method based on a large number of coordinated walkers, each starting from a node chosen uniformly at random. It is applicable to directed networks with invisible incoming edges because it constructs, in real-time, an undirected graph consistent with the walkers trajectories, and due to the use of random jumps which prevent walkers from being trapped. DUFS generalizes previous RW methods and is suited for undirected networks and to directed networks regardless of in-edges visibility. We also propose an improved estimator of node label distributions that combines information from the initial walker locations with subsequent RW observations. We evaluate DUFS, compare it to other RW methods, investigate the impact of its parameters on estimation accuracy and provide practical guidelines for choosing them. In estimating out-degree distributions, DUFS yields significantly better estimates of the head of the distribution than other methods, while matching or exceeding estimation accuracy of the tail. Last, we show that DUFS outperforms uniform node sampling when estimating distributions of node labels of the top 10% largest degree nodes, even when sampling a node uniformly has the same cost as RW steps.
A key task in social network and other complex network analysis is role analysis: describing and categorizing nodes according to how they interact with other nodes. Two nodes have the same role if they interact with equivalent sets of neighbors. The most fundamental role equivalence is automorphic equivalence. Unfortunately, the fastest algorithms known for graph automorphism are nonpolynomial. Moreover, since exact equivalence may be rare, a more meaningful task is to measure the role similarity between any two nodes. This task is closely related to the structural or link-based similarity problem that SimRank attempts to solve. However, SimRank and most of its offshoots are not sufficient because they do not fully recognize automorphically or structurally equivalent nodes. In this paper we tackle two problems. First, what are the necessary properties for a role similarity measure or metric? Second, how can we derive a role similarity measure satisfying these properties? For the first problem, we justify several axiomatic properties necessary for a role similarity measure or metric: range, maximal similarity, automorphic equivalence, transitive similarity, and the triangle inequality. For the second problem, we present RoleSim, a new similarity metric with a simple iterative computational method. We rigorously prove that RoleSim satisfies all the axiomatic properties. We also introduce an iceberg RoleSim algorithm which can guarantee to discover all pairs with RoleSim score no less than a user-defined threshold $theta$ without computing the RoleSim for every pair. We demonstrate the superior interpretative power of RoleSim on both both synthetic and real datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا