ﻻ يوجد ملخص باللغة العربية
Multi-step temporal-difference (TD) learning, where the update targets contain information from multiple time steps ahead, is one of the most popular forms of TD learning for linear function approximation. The reason is that multi-step methods often yield substantially better performance than their single-step counter-parts, due to a lower bias of the update targets. For non-linear function approximation, however, single-step methods appear to be the norm. Part of the reason could be that on many domains the popular multi-step methods TD($lambda$) and Sarsa($lambda$) do not perform well when combined with non-linear function approximation. In particular, they are very susceptible to divergence of value estimates. In this paper, we identify the reason behind this. Furthermore, based on our analysis, we propose a new multi-step TD method for non-linear function approximation that addresses this issue. We confirm the effectiveness of our method using two benchmark tasks with neural networks as function approximation.
Motivated by the emerging use of multi-agent reinforcement learning (MARL) in engineering applications such as networked robotics, swarming drones, and sensor networks, we investigate the policy evaluation problem in a fully decentralized setting, us
The temporal-difference methods TD($lambda$) and Sarsa($lambda$) form a core part of modern reinforcement learning. Their appeal comes from their good performance, low computational cost, and their simple interpretation, given by their forward view. Recently, n
Emphatic Temporal Difference (ETD) learning has recently been proposed as a convergent off-policy learning method. ETD was proposed mainly to address convergence issues of conventional Temporal Difference (TD) learning under off-policy training but i
Multi-agent value-based approaches recently make great progress, especially value decomposition methods. However, there are still a lot of limitations in value function factorization. In VDN, the joint action-value function is the sum of per-agent ac
An effective approach to exploration in reinforcement learning is to rely on an agents uncertainty over the optimal policy, which can yield near-optimal exploration strategies in tabular settings. However, in non-tabular settings that involve functio