ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing galaxy formation models with galaxy stellar mass functions

131   0   0.0 ( 0 )
 نشر من قبل S.H. Lim
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF)of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift $z_csim 2$. There is also tentative evidence that this characteristic redshift depends on environment, becoming $z_csim 4$ in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter halos, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high $z$, the star formation and stellar mass assembly histories in dark matter halos. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.



قيم البحث

اقرأ أيضاً

We compute covariance matrices for many observed estimates of the stellar mass function of galaxies from $z=0$ to $zapprox 4$, and for one estimate of the projected correlation function of galaxies split by stellar mass at $zlesssim 0.5$. All covaria nce matrices include contributions due to large scale structure, the preference for galaxies to be found in groups and clusters, and for shot noise. These covariance matrices are made available for use in constraining models of galaxy formation and the galaxy-halo connection.
We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them str uggle to simultaneously fit observations at high redshift. We separate the galaxies into passive and star-forming classes and find that several of the models produce too many low-mass star-forming galaxies at high redshift compared to observations, in some cases by nearly a factor of 10 in the redshift range $2.5 < z < 3.0$. We also find important differences in the implied mass of the dark matter haloes the galaxies inhabit, by comparing with halo masses inferred from observations. Galaxies at high redshift in the models are in lower mass haloes than suggested by observations, and the star formation efficiency in low-mass haloes is higher than observed. We conclude that many of the models require a physical prescription that acts to dissociate the growth of low-mass galaxies from the growth of their dark matter haloes at high redshift.
We present an estimate of the galaxy stellar mass function and its division by morphological type in the local (0.025 < z < 0.06) Universe. Adopting robust morphological classifications as previously presented (Kelvin et al.) for a sample of 3,727 ga laxies taken from the Galaxy And Mass Assembly survey, we define a local volume and stellar mass limited sub-sample of 2,711 galaxies to a lower stellar mass limit of M = 10^9.0 M_sun. We confirm that the galaxy stellar mass function is well described by a double Schechter function given by M* = 10^10.64 M_sun, {alpha}1 = -0.43, {phi}*1 = 4.18 dex^-1 Mpc^-3, {alpha}2 = -1.50 and {phi}*2 = 0.74 dex^-1 Mpc^-3. The constituent morphological-type stellar mass functions are well sampled above our lower stellar mass limit, excepting the faint little blue spheroid population of galaxies. We find approximately 71+3-4% of the stellar mass in the local Universe is found within spheroid dominated galaxies; ellipticals and S0-Sas. The remaining 29+4-3% falls predominantly within late type disk dominated systems, Sab-Scds and Sd-Irrs. Adopting reasonable bulge-to-total ratios implies that approximately half the stellar mass today resides in spheroidal structures, and half in disk structures. Within this local sample, we find approximate stellar mass proportions for E : S0-Sa : Sab-Scd : Sd-Irr of 34 : 37 : 24 : 5.
How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly (GAMA) group catalogue, we address this questio n by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellite LF and SMF respectively show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift $z approx 0.3$ relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.
We study the properties of the stellar populations in M81s outermost part, which hereafter we will term the stellar halo, using HST ACS/WFC observations of 19 fields from the GHOSTS survey. The observed fields probe the stellar halo out to a projecte d distance of ~ 50 kpc from the galactic center. Each field was observed in both F606W and F814W filters. The 50% completeness levels of the color magnitude diagrams (CMDs) are typically at 2 mag below the tip of the red giant branch (TRGB). Fields at distances closer than 15 kpc show evidence of disk-dominated populations whereas fields at larger distances are mostly populated by halo stars. The RGB of the M81s halo CMDs is well matched with isochrones of ~ 10 Gyr and metallicities [Fe/H] ~ -1.2 dex, suggesting that the dominant stellar population of M81s halo has a similar age and metallicity. The halo of M81 is characterized by a color distribution of width ~ 0.4 mag and an approximately constant median value of (F606W - F814W) ~ 1 mag measured using stars within the magnitude range 23.7 < F814W < 25.5. When considering only fields located at galactocentric radius R > 15 kpc, we detect no color gradient in the stellar halo of M81. We place a limit of 0.03+/-0.11 mag difference between the median color of RGB M81 halo stars at ~ 15 and at 50 kpc, corresponding to a metallicity difference of 0.08+/-0.35 dex over that radial range for an assumed constant age of 10 Gyr. We compare these results with model predictions for the colors of stellar halos formed purely via accretion of satellite galaxies. When we analyze the cosmologically motivated models in the same way as the HST data, we find that they predict no color gradient for the stellar halos, in good agreement with the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا