ﻻ يوجد ملخص باللغة العربية
In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the mass-ratio distribution and period - eccentricity (P - e) diagram of barium and S stars are compared to those of the sample of binary red giants in open clusters from Mermilliod et al. (2007). From the analysis of the mass-ratio distribution for the cluster binary giants, we find an excess of systems with companion masses between 0.58 and 0.87 Msun, typical for white dwarfs. They represent 22% of the sample, which are thus candidate post-mass-transfer systems. Among these candidates which occupy the same locus as the barium and S stars in the (P-e) diagram, only 33% (= 4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate -- about 0.3 dex -- to more extreme -- about 1 dex). These s-process-enriched cluster stars show a clear tendency to be in the clusters with the lowest metallicity in the sample, confirming the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities (the only strong barium star in our sample is found in the cluster with the lowest metallicity, i.e., star 173 in NGC 2420, with [Fe/H] = -0.26). The s-process overabundance is not clearly correlated with the cluster turnoff (TO) mass (such a correlation would instead hint at the importance of the dilution factor). We find as well a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 Msun, which implies that intermediate-mass AGB stars still operate the s-process and the third dredge-up.
We report the discovery of a trend of increasing barium abundance with decreasing age for a large sample of Galactic open clusters. The observed pattern of [Ba/Fe] vs. age can be reproduced with a Galactic chemical evolution model only assuming a hig
We investigate the relation of the stellar initial mass function (IMF) and the dense core mass function (CMF), using stellar masses and positions in 14 well-studied young groups. Initial column density maps are computed by replacing each star with a
We have observed high-dispersion echelle spectra of red giant members in the five open clusters NGC 1342, NGC 1662, NGC 1912, NGC 2354 and NGC 2447 and determined their radial velocities and chemical compositions. These are the first chemical abundan
In order to get a broader view of the s-process nucleosynthesis we study the abundance distribution of heavy elements of 35 barium stars and 24 CEMP-stars, including nine CEMP-s stars and 15 CEMP-r/s stars. The similar distribution of [Pb/hs] between
We have analysed high-dispersion echelle spectra ($R = 60000$) of red giant members of five open clusters to derive abundances for many elements from Na to Eu. The [Fe/H] values are $-0.06pm0.03$ for Stock 2, $-0.11pm0.03$ for NGC 2168, $-0.01pm0.03$