ﻻ يوجد ملخص باللغة العربية
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues for the extended family of dihedral modular graph functions are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues $s(s-1)$ for positive integers $s$ bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , mathbb Z)$, thereby generalizing a construction of Kawazumi. An
Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker--Eisenstein series. The sim
The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.
Modular graph forms are a class of modular covariant functions which appear in the genus-one contribution to the low-energy expansion of closed string scattering amplitudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying propert