ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision quadrupole moment reveals significant intruder component in 33Al20 ground state

91   0   0.0 ( 0 )
 نشر من قبل Hanne Heylen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The electric quadrupole moment of the 33Al20 ground state, located at the border of the island of inversion, was obtained using continuous-beam beta-detected nuclear quadrupole resonance (beta-NQR). From the measured quadrupole coupling constant Q = 2.31(4) MHz in an alpha-Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: Qs= 141(3) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N = 20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z>14 isotopes.



قيم البحث

اقرأ أيضاً

328 - D. Nagae , H. Ueno , D. Kameda 2008
Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms) has been measured by means of the beta-NMR spectroscopy using a spin-polarized 31Al beam produced in the projectile fragmentation reaction. The obtained Q moment, |Q_exp(31 Al)| = 112(32)emb, are in agreement with conventional shell model calculations within the sd valence space. Previous result on the magnetic moment also supports the validity of the sd model in this isotope, and thus it is concluded that 31Al is located outside of the island of inversion.
The ground state magnetic moment of 35K has been measured using the technique of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K nuclei were produced following the reaction of a 36Ar primary beam of energy 150 MeV/nucleon inci dent on a Be target. The spin polarization of the 35K nuclei produced at 2 degrees relative to the normal primary beam axis was confirmed. Together with the mirror nucleus 35S, the measurement represents the heaviest T = 3/2 mirror pair for which the spin expectation value has been obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2 known mirror moments and the slope and intercept are consistent with the previous analysis of T = 1/2 mirror pairs.
The electric quadrupole coupling constant of the ground state of 37K(3/2+, 1.22 s) in a tetragonal KH2PO4 single crystal was measured to be |eqQ/h| = 2.99 +- 0.07 MHz using the beta-ray detecting nuclear quadrupole resonance technique. The electric q uadrupole moment of 37K was determined to be |Q(37K)| = 10.6 +- 0.4 efm2, where the known electric quadrupole coupling constant of stable 39K in the KH2PO4 crystal was used as a reference. The present experimental result is larger than that predicted by shell-model calculations in the sd or the sd and fp model spaces. A possible variation of effective charges was explored to explain the discrepancy.
The hyperfine coupling constants of neutron deficient $^{37}$Ca were deduced from the atomic hyperfine spectrum of the $4s~^2S_{1/2}$ $leftrightarrow$ $4p~^2P_{3/2}$ transition in Ca II, measured using the collinear laser spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole moments were determined for the first time as $mu = +0.7453(72) mu_N$ and $Q = -15(11)$ $e^2$fm$^2$, respectively. The experimental values agree well with nuclear shell model calculations using the universal sd model-space Hamiltonia
High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for th e first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا