ﻻ يوجد ملخص باللغة العربية
The organization of nano-particles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the formation of colloidal structures in polymer brushes. Here we show that external fields are not essential to obtain such colloidal patterns: we report Monte Carlo and Molecular dynamics simulations that demonstrate that ordered structures can be achieved by compressing a `sandwich of two grafted polymer layers, or by squeezing a coated nanotube, with nano-particles in between. We show that the pattern formation can be efficiently controlled by the applied pressure, while the characteristic length--scale, i.e. the typical width of the patterns, is sensitive to the length of the polymers. Based on the results of the simulations, we derive an approximate equation of state for nano-sandwiches.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar
We explore the effect of an attractive interaction between parallel-aligned polymers, which are perpendicularly grafted on a substrate. Such an attractive interaction could be due to, e.g., reversible cross-links. The competition between permanent gr
We consider a polymer brush grafted to a surface (acting as an electrode) and bearing a charged group at its free end. Using a second distant electrode, the brush is subject to a constant electric field. Based on a coarse-grained continuum model, we
We study the changes in the conformations of brushes upon the addition of crosslinks between the chains using the bond fluctuation model. The Flory-Rehner model applied to uni-axially swollen networks predicts a collapse for large degrees of crosslin
Molecular Dynamics (MD) simulations are presented for a coarse-grained bead-spring model of ring polymer brushes under compression. Flexible polymer brushes are always disordered during compression, whereas semiflexible brushes tend to be ordered und