ﻻ يوجد ملخص باللغة العربية
Integrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits.
Nanofabricated mechanical resonators are gaining significant momentum among potential quantum technologies due to their unique design freedom and independence from naturally occurring resonances. With their functionality being widely detached from ma
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell pho
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a titanium in-diffused lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the ove
We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of 1550nm waveleng
The measurement and stabilization of the carrier-envelope offset frequency $f_{textrm{CEO}}$ via self-referencing is paramount for optical frequency comb generation which has revolutionized precision frequency metrology, spectroscopy, and optical clo