After centuries, the long-standing problem of the nature of ball lightning may be closer to a solution. The relativistic-microwave theory of ball lightning recently proposed by Wu accounts for many of the leading characteristics of ball lightning, which most previous theories have failed to do. It involves the impact of a lightning-caused relativistic electron bunch to soil, producing an EM pulse that forms a plasma bubble. While the theory presents a plausible account of ball-lightning formation, storing electromagnetic energy long enough to account for the observed lifetime of such objects was not demonstrated. Here we show how such a structure can develop the high Q factor (~10^10) needed for the observed lifetimes of ~seconds for ball lightning, and show that the structure is radially stable, given certain assumptions.