ﻻ يوجد ملخص باللغة العربية
Komlos [Komlos: Tiling Turan Theorems, Combinatorica, 2000] determined the asymptotically optimal minimum-degree condition for covering a given proportion of vertices of a host graph by vertex-disjoint copies of a fixed graph H, thus essentially extending the Hajnal-Szemeredi theorem which deals with the case when H is a clique. We give a proof of a graphon version of Komloss theorem. To prove this graphon version, and also to deduce from it the original statement about finite graphs, we use the machinery introduced in [Hladky, Hu, Piguet: Tilings in graphons, arXiv:1606.03113]. We further prove a stability version of Komloss theorem.
A fundamental result of Kuhn and Osthus [The minimum degree threshold for perfect graph packings, Combinatorica, 2009] determines up to an additive constant the minimum degree threshold that forces a graph to contain a perfect H-tiling. We prove a de
In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $1 times infty$ board with squares and do
Komlos conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conj
In this paper a closed form expression for the number of tilings of an $ntimes n$ square border with $1times 1$ and $2times1$ cuisenaire rods is proved using a transition matrix approach. This problem is then generalised to $mtimes n$ rectangular bor
In this paper, which is a sequel to cite{part1}, we proceed with our study of covers and decomposition laws for geometries related to generalized quadrangles. In particular, we obtain a higher decomposition law for all Kantor-Knuth generalized quadra