ﻻ يوجد ملخص باللغة العربية
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions, and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene microheater on a slow-light silicon photonic crystal waveguide, we experimentally demonstrated an energy-efficient graphene microheater with a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. The rise and decay times (10% to 90%) were only 750 ns and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding record-low figure of merit of the device was 2.543 nW.s, which is one order of magnitude lower than results reported in previous studies. The influences of the graphene-photonic crystal waveguide interaction length and the shape of the graphene heater were also investigated, providing valuable guidelines for enhancing the graphene microheater tuning efficiency.
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver
We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal latt
We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gai
We experimentally demonstrate that the spectral sensitivity of a Mach-Zehnder (MZ) interferometer can be enhanced through structural slow light. We observe a 20 times enhancement by placing a dispersion-engineered-slow-light photonic-crystal waveguid
We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15 nm flat-band slow-light window (vg ~ c/3