ﻻ يوجد ملخص باللغة العربية
The sensitivity properties of an SU(1,1) interferometer made of two cascaded parametric amplifiers, as well as of an ordinary SU(2) interferometer preceded by a squeezer and followed by an anti-squeezer, are theoretically investigated. Several possible experimental configurations are considered, such as the absence or presence of a seed beam, direct or homodyne detection scheme. In all cases we formulate the optimal conditions to achieve phase super-sensitivity, meaning a sensitivity overcoming the shot-noise limit. We show that for a given gain of the first parametric amplifier, unbalancing the interferometer by increasing the gain of the second amplifier improves the interferometer properties. In particular, a broader super-sensitivity phase range and a better overall sensitivity can be achieved by gain unbalancing.
For a squeezing-enhanced SU(2) interferometer, we theoretically investigate the possibility to broaden the phase range of sub-shot-noise sensitivity. We show that this goal can be achieved by implementing detection in both output ports, with the opti
The phase uncertainty of an unseeded nonlinear interferometer, where the output of one nonlinear crystal is transmitted to the input of a second crystal that analyzes it, is commonly said to be below the shot-noise level but highly dependent on detec
Vibrational environments are commonly considered to be detrimental to the optical emission properties of solid-state and molecular systems, limiting their performance within quantum information protocols. Given that such environments arise naturally
Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negativ
Squeezing ensemble of spins provides a way to surpass the standard quantum limit (SQL) in quantum metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we propose an experimentally accessible protocol to sque