ﻻ يوجد ملخص باللغة العربية
We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e. nonlocal measurements realized by coupling a single qubit regis- ter to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cramer-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e. saturation of the quantum Cramer-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.
Non-equilibrium states of quantum systems in contact with thermal baths help telling environments with different temperatures or different statistics apart. We extend these studies to a more generic problem that consists in discriminating between two
Active optical media leading to interaction Hamiltonians of the form $ H = tilde{lambda}, (a + a^{dagger})^{zeta}$ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media us
In circuit-based quantum computing, the available gate set typically consists of single-qubit gates acting on each individual qubit and at least one entangling gate between pairs of qubits. In certain physical architectures, however, some qubits may
We address a particular instance where open quantum systems may be used as quantum probes for an emergent property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes against decoherence is the key
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely disc