ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of photoinduced Floquet Weyl semimetal phases

280   0   0.0 ( 0 )
 نشر من قبل Xiao-Xiao Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Weyl semimetal exhibits various interesting physical phenomena because of the Weyl points, i.e., linear band-crossings. We show by Floquet theory that a linearly polarized light applied to a band insulator can induce controllable Weyl points. In a tight-binding model, we classify different types of photoinduced Weyl points that lead to a rich phase diagram characterized by the Chern number defined on each momentum slices of the bulk states. Taking account of the nonequilibrium electron distribution, we calculate and explain the nonmonotonous anomalous Hall conductivity in terms of the light frequency controlled shift of Weyl points position, which also allows us to examine the conductivitys dependence on the driving electric field.



قيم البحث

اقرأ أيضاً

254 - B. Q. Lv , H. M. Weng , B. B. Fu 2015
Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chi ral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What wi ll happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the $mathcal{N}=2$ supersymmetric massless QCD in a rotating electric field in the large $N_c$ limit realizing the first example of a holographic Floquet state. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: In the high frequency region, the Ohms law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the periodic thermodynamic concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Band-crossings occurring on a mirror plane are compelled to form a nodal loop in the momentum space without spin-orbit coupling (SOC). In the presence of other equivalent mirror planes, multiple such nodal loops can combine to form interesting nodal- link structures. Here, based on first-principles calculations and an effective $mathbf{k.p}$ model analysis, we show that CaAuAs hosts a unique starfruit-like nodal-link structure in the bulk electronic dispersion in the absence of SOC. This nodal-link is comprised of three nodal loops, which cross each other at the time-reversal-invariant momentum point $A$. When the SOC is turned on, the nodal loops are gapped out, resulting in a stable Dirac semimetal state with a pair of Dirac points along the $mathrm{Gamma-A}$ direction in the Brillouin zone. The Dirac points are protected by the combination of time reversal, inversion, and $C_3$ rotation symmetries. We show how a systematic elimination of the symmetry constraints yields a Weyl semimetal and eventually a topological insulator state.
Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.
105 - D. F. Liu , Q. N. Xu , E. K. Liu 2021
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t ime reversal symmetry) must be broken, leading to a topological phase transition (TPT). Despite the great importance in understanding the formation of TWSs and their unusual properties, direct observation of such a TPT has been challenging. Here, using a recently discovered magnetic TWS Co3Sn2S2, we were able to systematically study its TPT with detailed temperature dependence of the electronic structures by angle-resolved photoemission spectroscopy. The TPT with drastic band structures evolution was clearly observed across the Curie temperature (TC = 177 K), including the disappearance of the characteristic SFAs and the recombination of the spin-split bands that leads to the annihilation of Weyl points with opposite chirality. These results not only reveal important insights on the interplay between the magnetism and band topology in TWSs, but also provide a new method to control their exotic physical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا