ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

94   0   0.0 ( 0 )
 نشر من قبل Jonathan Ward
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jonathan T. Ward




اسأل ChatGPT حول البحث

The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.



قيم البحث

اقرأ أيضاً

Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope (ACT), adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background (CMB) anisotropies -- imaged in intensity and polarization at few arcminute-scale resolution -- will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor (TES) polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices (SQUIDs) and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.
The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope (ACT) features arrays of aluminum manganese transition-edge sensors (TESes) optimized for ground-based observations of the Cosmic Microwave Background (CMB). Array testing shows highly responsive detectors with anticipated in-band noise performance under optical loading. We report on TES parameters measured with impedance data taken on a subset of TESes. We then compare modeled noise spectral densities to measurements. We find excess noise at frequencies around 100 Hz, nearly outside of the signal band of CMB measurements. In addition, we describe full-array noise measurements in the laboratory and in the field for two new AdvACT mid-frequency arrays, sensitive at bands centered on 90 and 150 GHz, and data for the high-frequency array (150/230 GHz) as deployed.
We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize p lanar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.
182 - A. Orlando , R.W Aikin , M. Amiri 2010
BICEP2/Keck and SPIDER are cosmic microwave background (CMB) polarimeters targeting the B-mode polarization induced by primordial gravitational waves from inflation. They will be using planar arrays of polarization sensitive antenna-coupled TES bolom eters, operating at frequencies between 90 GHz and 220 GHz. At 150 GHz each array consists of 64 polarimeters and four of these arrays are assembled together to make a focal plane, for a total of 256 dual-polarization elements (512 TES sensors). The detector arrays are integrated with a time-domain SQUID multiplexer developed at NIST and read out using the multi-channels electronics (MCE) developed at the University of British Columbia. Following our progress in improving detector parameters uniformity across the arrays and fabrication yield, our main effort has focused on improving detector arrays optical and noise performances, in order to produce science grade focal planes achieving target sensitivities. We report on changes in detector design implemented to optimize such performances and following focal plane arrays characterization. BICEP2 has deployed a first 150 GHz science grade focal plane to the South Pole in December 2009.
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains inte rnal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا