ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissecting Galaxies: Spatial and Spectral Separation of Emission Excited by Star Formation and AGN Activity

146   0   0.0 ( 0 )
 نشر من قبل Rebecca Davies
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and AGN activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion onto an active galactic nucleus (AGN). We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (> 85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Halpha, Hbeta, [N II]$lambda$6583, [S II]$lambda lambda$6716, 6731, [O III]$lambda$5007 and [O II]$lambda lambda$3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star forming and AGN components also have distinct spatial distributions which trace structures seen in high resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.



قيم البحث

اقرأ أيضاً

We investigate the use of mid-infrared PAH bands, continuum and emission lines as probes of star-formation and AGN activity in a sample of 100 `normal and local (z~0.1) galaxies. The MIR spectra were obtained with the Spitzer IRS as part of the Spitz er-SDSS-GALEX Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from the UV to the FIR and optical spectroscopy. The spectra were decomposed using PAHFIT (Smith et al. 2007), which we find to yield PAH equivalent widths (EW) up to ~30 times larger than the commonly used spline methods. Based on correlations between PAH, continuum and emission line properties and optically derived physical properties (gas phase metallicity, radiation field hardness), we revisit the diagnostic diagram relating PAH EWs and [NeII]/[OIV] and find it more efficient as distinguishing weak AGNs from star-forming galaxies than when spline decompositions are used. The luminosity of individual MIR component (PAH, continuum, Ne and molecular hydrogen lines) are found to be tightly correlated to the total IR luminosity and can be used to estimate dust attenuation in the UV and in Ha lines based on energy balance arguments.
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous AGN. Our samples are selected from a large (11.8 deg$^2$) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume ($sim 0.3$ Gpc$^3$) at $0.5 < z < 3$ minimizes the effects of cosmic variance and captures a large number of massive galaxies ($sim 30,000$ galaxies with $M_* > 10^{11} M_{odot}$) and X-ray luminous AGN. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGN with Code Investigating GALaxy Emission (CIGALE) and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to $sim 5$ and $sim 10$, respectively. The average SFR of galaxies with X-ray luminous AGN is higher by a factor of $sim 3$ to $10$ compared to galaxies without X-ray luminous AGN at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fueled by common mechanisms. The vast majority ($> 95 %$) of galaxies with X-ray luminous AGN at $z=0.5-3$ do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.
We present the Advanced Camera for Surveys Active Galactic Nuclei (ACS-AGN) Catalog, a catalog of 2585 active galactic nucleus (AGN) host galaxies that are at redshifts 0.2<z<2.5 and that were imaged with the Hubble Space Telescopes Advanced Camera f or Surveys (ACS). Using the ACS General Catalog (ACS-GC) as our initial sample, we select an AGN subsample using Spitzer and Chandra data along with their respective established AGN selection criteria. We then gather further multi-wavelength photometric data in order to construct spectral energy distributions (SEDs). Using these SEDs we are able to derive multiple AGN and host galaxy properties, such as star formation rate, AGN luminosity, stellar mass, and nuclear column density. From these data, we show that AGN host galaxies tend to lie below the star-forming main sequence, with X-ray-selected AGN host galaxies being more offset than IR-selected AGN host galaxies. This suggests that there is some process, possibly negative feedback, in AGN host galaxies causing decreased star formation. We also demonstrate that there is a positive trend between star formation rate and AGN luminosity in AGN host galaxies, in individual redshift bins and across all redshift bins, and that both are correlated with the stellar mass of their galaxies. This points towards an underlying link between the stellar mass, stellar growth, and SMBH growth in a galaxy.
To understand the origin of radio emission in radio-quiet AGN and differentiate between the contributions from star formation, AGN accretion, and jets, we have observed a nearby sample of Seyfert galaxies along with a comparison sample of starburst g alaxies using the EVLA in full-polarization mode in the B-array configuration. The radio morphologies of the Seyfert galaxies show lobe/bubble-like features or prominent cores in radio emission whereas the starburst galaxies show radio emission spatially coincident with the star-forming regions seen in optical images. There is tentative evidence that Seyferts tend to show more polarized structures than starburst galaxies at the resolution of our observations. We find that unlike a sample of Seyfert galaxies hosting kilo-parsec scale radio (KSR) emission, starburst galaxies with superwinds do not show radio-excess compared to the radio-FIR correlation. This suggests that shock acceleration is not adequate to explain the excess radio emission seen in Seyferts and hence most likely have a jet-related origin. We also find that the [O III] luminosity of the Seyferts is correlated with the off-nuclear radio emission from the lobes, whereas it is not well correlated with the total emission which also includes the core. This suggests strong jet-medium interaction, which in turn limits the jet/lobe extents in Seyferts. We find that the power contribution of AGN jet, AGN accretion, and star formation is more or less comparable in our sample of Seyfert galaxies. We also find indications of episodic AGN activity in many of our Seyfert galaxies.
The enormous amounts of infrared (IR) radiation emitted by luminous infrared galaxies (LIRGs, L_IR=10^11-10^12Lsun) and ultraluminous infrared galaxies (ULIRGs, L_IR>10^12Lsun) are produced by dust heated by intense star formation (SF) activity and/o r an active galactic nucleus (AGN). The elevated star formation rates and high AGN incidence in (U)LIRGs make them ideal candidates to study the interplay between SF and AGN activity in the local universe. In this paper I review recent results on the physical extent of the SF activity, the AGN detection rate (including buried AGN), the AGN bolometric contribution to the luminosity of the systems, as well as the evolution of local LIRGs and ULIRGs. The main emphasis of this review is on recent results from IR observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا