ﻻ يوجد ملخص باللغة العربية
Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies and variability under different loading conditions have not been fully explored. Here, we use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for frictional grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyse these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear induced dilation and vibration induced compaction. We discuss the implications of our results on dynamic triggering, quiescence and strength evolution in gouge filled fault zones.
We report results of 3D Discrete Element Method (DEM) simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at v
The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when th
We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting i
Motion stages are widely used for precision positioning in manufacturing and metrology applications. However, they suffer from nonlinear premotion (i.e. static) friction, which adversely affects their speed and motion precision. In this article, a fr
We use the Discrete Element Method (DEM) to understand the underlying attenuation mechanism in granular media, with special applicability to the measurements of the so-called effective mass developed earlier. We consider that the particles interact v