ﻻ يوجد ملخص باللغة العربية
With the advent of spatially resolved fluorescence imaging in quantum gas microscopes, it is now possible to directly image glassy phases and probe the local effects of disorder in a highly controllable setup. Here we present numerical calculations using a spatially-resolved local mean-field theory, show that it captures the essential physics of the disordered system and use it to simulate the density distributions seen in single-shot fluorescence microscopy. From these simulated images we extract local properties of the phases which are measurable by a quantum gas microscope and show that unambiguous detection of the Bose glass is possible. In particular, we show that experimental determination of the Edwards-Anderson order parameter is possible in a strongly correlated quantum system using existing experiments. We also suggest modifications to the experiments which will allow further properties of the Bose glass to be measured.
We probe the transition between superfluid and Bose glass phases using quantum quenches of disorder in an ultracold atomic lattice gas that realizes the disordered Bose-Hubbard model. Measurements of excitations generated by the quench exhibit thresh
Exploiting quantum properties to outperform classical ways of information-processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controlla
In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds tha
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation (BEC) and superfluidity, which have been tested experimentally in a variety of different
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th