ﻻ يوجد ملخص باللغة العربية
We analyze the mechanism of condensation of orientational moduli (as introduced in [25]) on multi-Skyrmionic configurations of the four-dimensional Skyrme model. The present analysis reveals interesting novel features. First of all, the orientational moduli tend to decrease the repulsive interactions between Skyrmions, the effect decreasing with the increase of the Baryon number. Moreover, in the case of a single Skyrmion, the appearance of moduli is energetically favorable if finite volume effects are present. Otherwise, in the usual flat topologically trivial case, it is not. In the low energy theory these solutions can be interpreted as Skyrmions with additional isospin degrees of freedom.
The dynamics of both global and local vortices with non-Abelian orientational moduli is investigated in detail. Head-on collisions of these vortices are numerically simulated for parallel, anti-parallel and orthogonal internal orientations where we f
We study 5-dimensional supergravity on S^1/Z_2 with a physical Z_2-odd vector multiplet, which yields an additional modulus other than the radion. We derive 4-dimensional effective theory and find additional terms in the Kahler potential that are pec
We investigate 5-dimensional supergravity on S^1/Z_2 with a physical Z_2-odd vector multiplet, which yields an additional modulus other than the radion. We find additional terms in the 4-dimensional effective theory that are peculiar to the multi mod
We construct analytic (3+1)-dimensional Skyrmions living at finite Baryon density in the SU(N) Skyrme model that are not trivial embeddings of SU(2) into SU(N). We used Euler angles decomposition for arbitrary N and the generalized hedgehog Ansatz at
We study non-perturbative moduli superpotentials with positive exponents, i.e. the form like $Ae^{aT}$ with a positive constant $a$ and the modulus $T$. These effects can be generated, e.g., by D-branes which have negative RR charge of lower dimensio