ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic moment evolution and spin freezing in doped BaFe$_{2}$As$_{2}$

53   0   0.0 ( 0 )
 نشر من قبل Jonathan Pelliciari
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fe-K$_{beta}$ X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments $mu_text{bare}$ in electron- and hole-doped BaFe$_{2}$As$_{2}$. At low temperature, $mu_text{bare}$ is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances $mu_text{bare}$ in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hunds coupling and electronic correlations, especially for hole-doped BaFe$_{2}$As$_{2}$, and the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.



قيم البحث

اقرأ أيضاً

We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_{c}=20$ K). Above $T_{c}$ the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c-axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the $T$-dependence of the superconducting gap observed by angle resolved photoemission. Both the spin gap and magnetic resonance energies are temperature textit{and} wave vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity.
The possible existence of a sign-changing gap symmetry in BaFe$_{2}$As$_{2}$-derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and p ressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe$_{1.9}M_{0.1}$As$_{2}$ ($M=$ Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for $M=$ Cu and Mn compounds, which display very low SC transition temperature ($T_{c}$) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of $T_{c}$ cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x )As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
The iron-based superconductor Ba$_{1-x}$K$_x$Fe$_text{2}$As$_text{2}$ is emerging as a key material for high magnetic field applications owing to the recent developments in superconducting wires and bulk permanent magnets. Epitaxial thin films play i mportant roles in investigating and artificially tuning physical properties; nevertheless, the synthesis of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ epitaxial thin films remained challenging because of the high volatility of K. Herein, we report the successful growth of epitaxial Ba$_{1-x}$K$_x$Fe$_text{2}$As$_text{2}$ thin films by molecular-beam epitaxy with employing a combination of fluoride substrates (CaF$_text{2}$, SrF$_text{2}$, and BaF$_text{2}$) and a low growth temperature (350$-$420$^circ$C). Our epitaxial thin film grown on CaF$_text{2}$ showed sharp superconducting transition at an onset critical temperature of 36 K, slightly lower than bulk crystals by ~2 K due presumably to the strain effect arising from the lattice and thermal expansion mismatch. Critical current density ($J$$_text{c}$) determined by the magnetization hysteresis loop is as high as 2.2 MA/cm$^text{2}$ at 4 K under self-field. In-field $J$$_text{c}$ characteristics of the film are superior to the bulk crystals. The realization of epitaxial thin films opens opportunities for tuning superconducting properties by epitaxial strain and revealing intrinsic grain boundary transport of Ba$_{1-x}$K$_x$Fe$_text{2}$As$_text{2}$.
Since the discovery of the metallic antiferromagnetic (AF) ground state near superconductivity in iron-pnictide superconductors, a central question has been whether magnetism in these materials arises from weakly correlated electrons, as in the case of spin-density-wave in pure chromium, requires strong electron correlations, or can even be described in terms of localized electrons such as the AF insulating state of copper oxides. Here we use inelastic neutron scattering to determine the absolute intensity of the magnetic excitations throughout the Brillouin zone in electron-doped superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_c=20$ K), which allows us to obtain the size of the fluctuating magnetic moment $<m^2>$, and its energy distribution. We find that superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ and AF BaFe$_2$As$_2$ both have fluctuating magnetic moments $<m^2>approx3.2 mu_B^2$ per Fe(Ni), which are similar to those found in the AF insulating copper oxides. The common theme in both classes of high temperature superconductors is that magnetic excitations have partly localized character, thus showing the importance of strong correlations for high temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا