ﻻ يوجد ملخص باللغة العربية
Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond quoted error for the same elements within the same stars (Hinkel et al. 2014). The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We have invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and USA) to calculate ten element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD361, HD10700, HD121504, HD202206). Each group produced measurements for each of the stars using: 1) their own autonomous techniques, 2) standardized stellar parameters, 3) standardized line list, and 4) both standardized parameters and line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.
We present the first measurements of [Fe/H] and [$alpha$/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31s giant stellar stream. The spectroscopic observations, obtained at a projected distance of 17 kpc f
The chemical composition of galaxies has been measured out to z~4. However, nearly all studies beyond z~0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galax
Space-based projects are providing a wealth of high-quality asteroseismic data, including frequencies for a large number of stars showing solar-like oscillations. These data open the prospect for precise determinations of key stellar parameters, of p
Differences in chemical composition among main sequence stars within a given cluster are probably due to differences in their masses and other effects such as radiative diffusion, magnetic field, rotation, mixing mechanisms, mass loss, accretion and