ﻻ يوجد ملخص باللغة العربية
Matrices associated with graphs, such as the Laplacian, lead to numerous interesting graph problems expressed as linear systems. One field where Laplacian linear systems play a role is network analysis, e. g. for certain centrality measures that indicate if a node (or an edge) is important in the network. One such centrality measure is current-flow closeness. To allow network analysis workflows to profit from a fast Laplacian solver, we provide an implementation of the LAMG multigrid solver in the NetworKit package, facilitating the computation of current-flow closeness values or related quantities. Our main contribution consists of two algorithms that accelerate the current-flow computation for one node or a reasonably small node subset significantly. One sampling-based algorithm provides an unbiased estimation of the related electrical farness, the other one is based on the Johnson-Lindenstrauss transform. Our inexact algorithms lead to very accurate results in practice. Thanks to them one is now able to compute an estimation of current-flow closeness of one node on networks with tens of millions of nodes and edges within seconds or a few minutes. From a network analytical point of view, our experiments indicate that current-flow closeness can discriminate among different nodes significantly better than traditional shortest-path closeness and is also considerably more resistant to noise -- we thus show that two known drawbacks of shortest-path closeness are alleviated by the current-flow variant.
Linear system solving is one of the main workhorses in applied mathematics. Recently, theoretical computer scientists have contributed sophisticated algorithms for solving linear systems with symmetric diagonally dominant matrices (a class to which L
A new method for solving Laplacian linear systems proposed by Kelner et al. involves the random sampling and update of fundamental cycles in a graph. Kelner et al. proved asymptotic bounds on the complexity of this method but did not report experimen
Interior point algorithms for solving linear programs have been studied extensively for a long time [e.g. Karmarkar 1984; Lee, Sidford FOCS14; Cohen, Lee, Song STOC19]. For linear programs of the form $min_{Ax=b, x ge 0} c^top x$ with $n$ variables a
We develop a nonlinear multigrid method to solve the steady state of microflow, which is modeled by the high order moment system derived recently for the steady-state Boltzmann equation with ES-BGK collision term. The solver adopts a symmetric Gauss-
We have developed an efficient algorithm for steady axisymmetrical 2D fluid equations. The algorithm employs multigrid method as well as standard implicit discretization schemes for systems of partial differential equations. Linearity of the multigri