ﻻ يوجد ملخص باللغة العربية
Motivated by original equipment manufacturer (OEM) service and maintenance practices we consider a single component subject to replacements at failure instances and two types of preventive maintenance opportunities: scheduled, which occur due to periodic system reviews of the equipment, and unscheduled, which occur due to failures of other components in the system. Modelling the state of the component appropriately and incorporating a realistic cost structure for corrective maintenance as well as condition-based maintenance (CBM), we derive the optimal CBM policy. In particular, we show that the optimal long-run average cost policy for the model at hand is a control-limit policy, where the control limit depends on the time until the next scheduled opportunity. Furthermore, we explicitly calculate the long-run average cost for any given control-limit time dependent policy and compare various policies numerically.
We suggest a mathematical model for computing and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterium takes into account the current ages of the key components, the major maintenance costs including eve
This paper proposes a dynamic game-based maintenance scheduling mechanism for the asset owners of the natural gas grid and the power grid by using a bilevel approach. In the upper level, the asset owners of the natural gas grid and the power grid sch
Whereas maintenance has been recognized as an important and effective means for risk management in power systems, it turns out to be intractable if cascading blackout risk is considered due to the extremely high computational complexity. In this pape
Let $z=(x,y)$ be coordinates for the product space $mathbb{R}^{m_1}times mathbb{R}^{m_2}$. Let $f:mathbb{R}^{m_1}times mathbb{R}^{m_2}rightarrow mathbb{R}$ be a $C^1$ function, and $ abla f=(partial _xf,partial _yf)$ its gradient. Fix $0<alpha <1$. F
We investigate a two-player zero-sum differential game with asymmetric information on the payoff and without Isaacs condition. The dynamics is an ordinary differential equation parametrised by two controls chosen by the players. Each player has a pri