ﻻ يوجد ملخص باللغة العربية
Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with $mathcal{O}$(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.
It is challenging to achieve high precision energy resolution for large liquid scintillator detectors. Energy non-uniformity is one of the main obstacles. To surmount it, a calibration-data driven method was developed previously to reconstruct event
Environmental radioactivity is a dominant background for rare decay search experiments, and it is difficult to completely remove such an impurity from detector vessels. We propose a scintillation balloon as the active vessel of a liquid scintillator
The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such
Liquid scintillator detectors are widely used in modern neutrino studies. The unique optical properties of semiconducting nanocrystals, known as quantum dots, offer intriguing possibilities for improving standard liquid scintillator, especially when
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, an