ﻻ يوجد ملخص باللغة العربية
In this Letter, we report the observational constraints on the Hu-Sawicki $f(R)$ theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter $|f_{R0}|$ for $n=1$. The $95%$ CL limit is $log_{10}|f_{R0}| < -4.82$ given WMAP9 priors on $(Omega_{rm m}, A_{rm s})$. With Planck15 priors, the corresponding result is $log_{10}|f_{R0}| < -5.16$.
A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 sq deg of multicolour optical data
We present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality,
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon $f(R)$ gravity - a leading candidate of non-standard gravity models. For the analysis we have created mock galaxy catalogues based on dark matter haloes from two se
We derived constraints on cosmological parameters using weak lensing peak statistics measured on the $sim130~{rm deg}^2$ of the Canada-France-Hawaii Telescope Stripe 82 Survey (CS82). This analysis demonstrates the feasibility of using peak statistic