ﻻ يوجد ملخص باللغة العربية
A $ k $-page book drawing of a graph $ G $ is a drawing of $ G $ on $ k $ halfplanes with common boundary $ l $, a line, where the vertices are on $ l $ and the edges cannot cross $ l $. The $ k $-page book crossing number of the graph $ G $, denoted by $ u_k(G) $, is the minimum number of edge-crossings over all $ k $-page book drawings of $ G $. Let $G=K_n$ be the complete graph on $n$ vertices. We improve the lower bounds on $ u_k(K_n) $ for all $ kgeq 14 $ and determine $ u_k(K_n) $ whenever $ 2 < n/k leq 3 $. Our proofs rely on bounding the number of edges in convex graphs with small local crossing numbers. In particular, we determine the maximum number of edges that a convex graph with local crossing number at most $ ell $ can have for $ ellleq 4 $.
Given a finite irreducible Coxeter group $W$, a positive integer $d$, and types $T_1,T_2,...,T_d$ (in the sense of the classification of finite Coxeter groups), we compute the number of decompositions $c=si_1si_2 cdotssi_d$ of a Coxeter element $c$ o
Let $B_n^{(k)}$ be the book graph which consists of $n$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $C_m$ be a cycle of length $m$. In this paper, we first determine the exact value of $r(B_n^{(2)}, C_m)$ for $frac{8}{9}n+112le mle lceilf
We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $mathbb{S}^2$ in $mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probab
A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum nu
Let $mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of