ﻻ يوجد ملخص باللغة العربية
We study the spectral function of the homogeneous electron gas using many-body perturbation theory and the cumulant expansion. We compute the angle-resolved spectral function based on the GW approximation and the `GW plus cumulant approach. In agreement with previous studies, the GW spectral function exhibits a spurious plasmaron peak at energies 1.5$omega_{rm pl}$ below the quasiparticle peak, $omega_{rm pl}$ being the plasma energy. The GW plus cumulant approach, on the other hand, reduces significantly the intensity of the plasmon-induced spectral features and renormalizes their energy relative to the quasiparticle energy to $omega_{rm pl}$. Consistently with previous work on semiconductors, our results show that the HEG is characterized by the emergence of plasmonic polaron bands, that is, broadened replica of the quasiparticle bands, red-shifted by the plasmon energy.
We apply a recently developed quasiparticle self-consistent $GW$ method (QSGW) to Gd, Er, EuN, GdN, ErAs, YbN and GdAs. We show that QSGW combines advantages separately found in conventional $GW$ and LDA+$U$ theory, in a simple and fully emph{ab init
We have implemented the so called GW approximation (GWA) based on an all-electron full-potential Projector Augmented Wave (PAW) method. For the screening of the Coulomb interaction W we tested three different plasmon-pole dielectric function models,
We describe an approach for calculations of phonon contributions to the electron spectral function, including both quasiparticle properties and satellites. The method is based on a cumulant expansion for the retarded one-electron Greens function and
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol
We present a new all-electron, augmented-wave implementation of the GW approximation using eigenfunctions generated by a recent variant of the full-potential LMTO method. The dynamically screened Coulomb interaction W is expanded in a mixed basis set