ترغب بنشر مسار تعليمي؟ اضغط هنا

Quenching of charge and spin degrees of freedom in condensed matter

255   0   0.0 ( 0 )
 نشر من قبل Fumitaka Kagawa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrons in condensed matter have internal degrees of freedom, such as charge, spin and orbital, leading to various forms of ordered states through phase transitions. However, in individual materials, a charge/spin/orbital ordered state of the lowest temperature is normally uniquely determined in terms of the lowest-energy state, i.e., the ground state. Here, we summarize recent results showing that under rapid cooling, this principle does not necessarily hold, and thus, the cooling rate is a control parameter of the lowest-temperature state beyond the framework of the thermo-equilibrium phase diagram. Although the cooling rate utilized in low-temperature experiments is typically 2*10^-3 - 4*10^-1 K/s, the use of optical/electronic pulses facilitate rapid cooling, such as 10^2-10^3 K/s. Such an unconventionally high cooling rate allows some systems to kinetically avoid a first-order phase transition, resulting in a quenched charge/spin state that differs from the ground state. We also demonstrate that quenched states can be exploited as a non-volatile state variable when designing phase-change memory functions. The present findings suggest that rapid cooling is useful for exploring and controlling the metastable electronic/magnetic state that is potentially hidden behind the ground state.



قيم البحث

اقرأ أيضاً

78 - Pooja Sahlot , A.K. Sinha , 2019
From low-temperature Synchrotron X-ray diffraction, a precise thermal characterization of octahedral distortions in single phase Ruddlesden-Popper Ca3Mn2O7 is performed. Highly sensitive close-steps temperature dependences of Mn-O-Mn bond angles conn ecting MnO6 octahedra clearly reveal signature of the spin-ordering in the system. Spin-lattice coupling is thus established via the structural distortions responsible for evolution of the magnetic state. Further, temperature anomalies observed here in volume and polarization-measure of the unit cell highlight the interplay between spin, lattice and charge degrees of freedom. Dipole-relaxation characteristics examined under applied magnetic field consistently corroborate the concurrent magnetic and structural changes, in terms of genuine and intrinsic magneto-dielectricity.
The presence of a quantum critical point separating two distinct zero-temperature phases is thought to underlie the `strange metal state of many high-temperature superconductors. The nature of this quantum critical point, as well as a description of the resulting strange metal, are central open problems in condensed matter physics. In large part, the controversy stems from the lack of a clear broken symmetry to characterize the critical phase transition, and this challenge is no clearer than in the example of the unconventional superconductor CeCoIn$_5$. Through Hall effect and Fermi surface measurements of CeCoIn$_5$, in comparison to ab initio calculations, we find evidence for a critical point that connects two Fermi surfaces with different volumes without apparent symmetry-breaking, indicating the presence of a transition that involves an abrupt localization of one sector of the charge degrees of freedom. We present a model for the anomalous electrical Hall resistivity of this material based on the conductivity of valence charge fluctuations.
Novel materials incorporating electronic degrees of freedom other than charge, including spin, orbital or valley textit{et al} have manifested themselves to be of the great interests and applicable potentials. Recently, the multipolar degrees of free dom have attracted remarkable attention in the electronic correlated effects. In this work, we systematically studied the transport, magnetic and thermodynamic properties of the topological semimetal candidate PrBi in the framework of crystalline electric field theory. Our results demonstrate the $Gamma_3$ non-Kramers doublet as the ground state of Pr$^{3+}$ (4$f^2$) ions. This ground state is nonmagnetic but carries a non-zero quadrupolar moment $langlehat{O}_2^0rangle$. A quadrupolar phase transition is inferred below 0.08 K. No obvious quadrupolar Kondo effect can be identified. Ultrahigh-field quantum oscillation measurements confirm PrBi as a semimetal with non-trivial Berry phase and low total carrier density 0.06 /f.u. We discuss the interplay between low carrier density and $4f^2$ quadrupolar moment, and ascribe the weak quadrupolar ordering and Kondo effect to consequences of the low carrier density. PrBi, thus, opens a new window to the physics of topology and strongly correlated effect with quadrupolar degrees of freedom in the low-carrier-density limit, evoking the need for a reexamination of the Nozi`{e}res exhaustion problem in the context of multi-channel Kondo effect.
We measure the renormalized effective mass (m*) of interacting two-dimensional electrons confined to an AlAs quantum well while we control their distribution between two spin and two valley subbands. We observe a marked contrast between the spin and valley degrees of freedom: When electrons occupy two spin subbands, m* strongly depends on the valley occupation, but not vice versa. Combining our m* data with the measured spin and valley susceptibilities, we find that the renormalized effective Lande g-factor strongly depends on valley occupation, but the renormalized conduction-band deformation potential is nearly independent of the spin occupation.
Inelastic neutron scattering measurements on the molecular dimer-Mott insulator $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl reveal a phonon anomaly in a wide temperature range. Starting from $T_{rm ins}sim50$-$60$ K where the charge gap opens, the low- lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature $T_mathrm{N} = 27$ K, where also a ferroelectric ordering at $T_{rm FE} approx T_{rm N}$ occurs. Conversely, the phonon damping becomes small again when spins and charges are ordered below $T_mathrm{N}$, while no change of the lattice symmetry is observed across $T_mathrm{N}$ in neutron diffraction measurements. We assign the phonon anomalies to structural fluctuations coupled to charge and spin degrees of freedom in the BEDT-TTF molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا