ﻻ يوجد ملخص باللغة العربية
Recent discovery of bulk insulating topological insulator (TI) Bi2-xSbxTe3-ySey paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs work function is of essential importance. We have determined the compositional dependence of work function in Bi2-xSbxTe3-ySey by high-resolution photoemission spectroscopy. The obtained work-function values (4.95-5.20 eV) show a systematic variation with the composition, well tracking the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as a useful guide for developing TI-based electronic devices.
As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been
One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples are recently reported,
Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic sys
Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existenc
We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators also support localised bulk states deep in their valance and conduction bands. These states manifest when local potential gradients are applied