ﻻ يوجد ملخص باللغة العربية
We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1mJy/beam at 1.4GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1mJy/beam. However, one survey found an areal density of radio variables on timescales of decades that is a factor of ~4 times greater than a second survey which was conducted on timescales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be $rho =0.98mathrm{deg}^{-2}$ on timescales of 6 months to 8 years. We make use of WISE infrared cross-ids, and identify all variable sources as an AGN of some description. We suggest that the discrepancy between previous VLA results is due to the different time scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on timescales of 2 - 5 years.
Insensitive to dust obscuration, radio wavelengths are ideal to study star-forming galaxies free of dust induced biases. Using data from the Phoenix Deep Survey, we have identified a sample of star-forming extremely red objects (EROs). Stacking of th
The Phoenix Deep Survey (PDS) is a multiwavelength survey based on deep 1.4 GHz radio observations used to identify a large sample of star forming galaxies to z=1. Here we present an exploration of the evolutionary constraints on the star-forming pop
We report the results of the Australia Telescope Compact Array (ATCA) 15 mm observation of the Phoenix galaxy cluster possessing an extreme star-burst brightest cluster galaxy (BCG) at the cluster center. We spatially resolved radio emission around t
Deep radio observations at 1.4GHz for the Extended Chandra Deep Field South were performed in June through September of 2007 and presented in a first data release (Miller et al. 2008). The survey was made using six separate pointings of the Very Larg
The Phoenix Deep Survey (PDS) is a multiwavelength survey based on deep 1.4 GHz radio observations used to identify a large sample of star forming galaxies to z=1. Photometric redshifts are estimated for the optical counterparts to the radio-detected