ﻻ يوجد ملخص باللغة العربية
We provide a systematic treatment of the tenfold way of classifying fermionic systems that naturally allows for the study of those with arbitrary $N$-body interactions. We identify four types of symmetries that such systems can possess, which consist of one ordinary type (usual unitary symmetries), and three non-ordinary symmetries (such as time reversal, charge conjugation and sublattice). Focusing on systems that possess no non-trivial ordinary symmetries, we demonstrate that the non-ordinary symmetries are strongly constrained. This approach not only leads very naturally to the tenfold classes, but also obtains the canonical representations of these symmetries in each of the ten classes. We also provide a group cohomological perspective of our results in terms of projective representations. We then use the canonical representations of the symmetries to obtain the structure of Hamiltonians with arbitrary $N$-body interactions in each of the ten classes. We show that the space of $N$-body Hamiltonians has an affine subspace (of a vector space) structure in classes which have either or both charge conjugation and sublattice symmetries. Our results can help address open questions on the topological classification of interacting fermionic systems.
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la
In this paper, the quantum phase transition between superfluid state and Mott-insulator state is studied based on an extended Bose-Hubbard model with two- and three-body on-site interactions. By employing the mean-field approximation we find the exte
The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as
Two-dimensional ($p_{x}+ip_{y}$) superfluids/superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic a
Long-range interacting many-body systems exhibit a number of peculiar and intriguing properties. One of those is the scaling of relaxation times with the number $N$ of particles in a system. In this paper I give a survey of results on long-range quan